@article{SM_1980_37_2_a2,
author = {\`E. M. Pal'chik},
title = {Finite simple groups whose {Sylow} $2$-subgroups contain a~cyclic subgroup of index~$16$},
journal = {Sbornik. Mathematics},
pages = {181--203},
year = {1980},
volume = {37},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_37_2_a2/}
}
È. M. Pal'chik. Finite simple groups whose Sylow $2$-subgroups contain a cyclic subgroup of index $16$. Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 181-203. http://geodesic.mathdoc.fr/item/SM_1980_37_2_a2/
[1] M. W. Convisser, “$2$-groups which contain exactly three involutions”, Math. Z., 130:1 (1973), 19–30 | DOI | MR
[2] N. Blackburn, “Note on a paper of Berkovich”, J. Algebra, 24:2 (1973), 323–334 | DOI | MR | Zbl
[3] Ya. G. Berkovich, “O $p$-gruppakh konechnogo poryadka”, Sib. matem. zh., 9:6 (1968), 1284–1306 | Zbl
[4] Ya. G. Berkovich, “O podgruppakh konechnykh $p$-grupp”, Izv. VUZov, Matematika, 1973, no. 9, 9–17 | Zbl
[5] B. Beisiegel, “Über einfache endliche Gruppen mit Sylow-$2$-Gruppen der Ordnung höchstens $2^{10}$”, Comm. Algebra, 5:2 (1977), 113–170 | DOI | MR | Zbl
[6] A. S. Kondratev, “Konechnye prostye gruppy s silovskimi 2-podgruppami poryadka $2^7$”, Izv. AN SSSR, seriya matem., 41:4 (1977), 752–767 | MR | Zbl
[7] K. Harada, “On finite groups having self-centralizing $2$-subgroups of small order”, J. Algebra, 33:1 (1975), 144–160 | DOI | MR | Zbl
[8] D. Goldschmidt, “$2$-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR | Zbl
[9] D. Goldenstein, K. Harada, “Finite groups whose $2$-subgroups are generated by at most $4$ elements”, Mem. Amer. Math. Soc., 147 (1974) | MR
[10] E. M. Palchik, “O tsentralizatorakh involyutsii v konechnykh gruppakh”, Konechnye gruppy, Minsk, 1975, 109–120
[11] G. Glauberman, “Normalizers of $p$-groups in finite groups”, Pacific J. Math., 29:96 (1969), 137–144 | MR
[12] G. Glauberman, “Weakly closed elements of Sylow subgroups”, Math. Z., 107:1 (1968), 1–20 | DOI | MR | Zbl
[13] G. Glauberman, “Weakly closed elements of Sylow subgroups. II”, Math. Z., 112:2 (1969), 89–100 | DOI | MR | Zbl
[14] G. Glauberman, “A sufficient condition for $p$-stability”, Proc. London Math. Soc., 25:2 (1972), 253–287 | DOI | MR | Zbl
[15] A. S. Kondratev, “Konechnye prostye gruppy, silovskie $2$-podgruppy kotorykh imeyut tsiklicheskii kommutant”, Sib. matem. zh., 17:1 (1976), 85–90 | MR
[16] A. S. Kondratev, “Konechnye prostye gruppy, silovskaya $2$-podgruppa kotorykh est rasshirenie abelevoi gruppy posredstvom gruppy ranga $1$”, Algebra i logika, 14:3 (1975), 288–303 | MR
[17] D. Mason, “Finite simple groups with Sylow $2$-subgroups dihedral wreath $Z_2$”, J. Algebra, 26:1(173), 10–68 | DOI | MR | Zbl
[18] D. Gorenstein, Finite groups, New York, 1968 | MR | Zbl
[19] Ya. G. Berkovich, E. M. Palchik, “O perestanovochnosti podgrupp konechnoi gruppy”, Sib. matem. zh., 8:4 (1967), 741–753 | Zbl
[20] A. D. Ustyuzhaninov, “Konechnye $2$-gruppy, v kotorykh mnozhestvo samotsentralizuyuschikhsya abelevykh invariantnykh podgrupp s chislom porozhdayuschikh $\ge 3$ pusto ($SCN_3(2)=\varnothing$)”, Izv. AN SSSR, seriya matem., 37 (1973), 251–283
[21] A. N. Fomin, “Konechnye $2$-gruppy, v kotorykh tsentralizator nekotoroi involyutsii imeet poryadok $8$”, Matem. zapiski, Uralskii un-t, 8:3 (1973), 122–132 | MR | Zbl
[22] B. Huppert, Engliche Gruppen, I, Berlin, 1967 | Zbl
[23] B. Huppert, “Über das Produkt von paarweise vertauschbaren zyklischen Gruppen”, Math. Z., 58:4 (1953), 243–264 | DOI | MR | Zbl
[24] N. Blackburn, “Über das Produkt von zwei zyklischen $2$-Gruppen”, Math. Z., 68:6 (1958), 422–427 | MR | Zbl