On the number of solutions of an $n$th degree congruence with one unknown
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 151-166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that the number of solutions to the congruence $f(x)\equiv 0\pmod m$, where $f(x)$ is a polynomial of degree $n\geqslant2$ whose coefficients have greatest common divisor relatively prime to $m$, does not exceed $(n/e+O(\ln^2 n))m^{1-1/n}$, where $n/e+O(\ln^2n)$ cannot be replaced by $n/e$.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1980_37_2_a0,
     author = {S. V. Konyagin},
     title = {On the number of solutions of an $n$th degree congruence with one unknown},
     journal = {Sbornik. Mathematics},
     pages = {151--166},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_2_a0/}
}
                      
                      
                    S. V. Konyagin. On the number of solutions of an $n$th degree congruence with one unknown. Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 151-166. http://geodesic.mathdoc.fr/item/SM_1980_37_2_a0/
