On the number of solutions of an $n$th degree congruence with one unknown
Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 151-166
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the number of solutions to the congruence $f(x)\equiv 0\pmod m$, where $f(x)$ is a polynomial of degree $n\geqslant2$ whose coefficients have greatest common divisor relatively prime to $m$, does not exceed $(n/e+O(\ln^2 n))m^{1-1/n}$, where $n/e+O(\ln^2n)$ cannot be replaced by $n/e$. Bibliography: 5 titles.
@article{SM_1980_37_2_a0,
author = {S. V. Konyagin},
title = {On the number of solutions of an $n$th degree congruence with one unknown},
journal = {Sbornik. Mathematics},
pages = {151--166},
year = {1980},
volume = {37},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_37_2_a0/}
}
S. V. Konyagin. On the number of solutions of an $n$th degree congruence with one unknown. Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 151-166. http://geodesic.mathdoc.fr/item/SM_1980_37_2_a0/
[1] I. M. Vinogradov, Osnovy teorii chisel, izd-vo “Nauka”, Moskva, 1972 | MR
[2] E. Kamke, “Zur Arithmetik der Polynome”, Math. Z., XIX (1924), 247–264 | DOI | MR
[3] V. I. Nechaev, “Otsenka polnoi ratsionalnoi trigonometricheskoi summy”, Matem. zametki, 17:6 (1975), 839–849 | MR | Zbl
[4] S. B. Stechkin, “Otsenka polnoi ratsionalnoi trigonometricheskoi summy”, Trudy matem. in-ta im. V. A. Steklova, CXLIII, 1977, 188–207 | MR | Zbl
[5] V. N. Chubarikov, Kratnye trigonometricheskie summy, Kandidatskaya dissertatsiya, Moskva, 1977