Free interpolation sets for H\"older classes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 97-117
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathbf D=\{z,|z|1\}$, let $E$ be a closed subset of $\overline{\mathbf D}$ and let $0$. Let $A^s$ be the space of functions $f$ analytic in $\mathbf D$ and
continuous in $\overline{\mathbf D}$ such that
\begin{equation}
|f(z_1)-f(z_2)|\leqslant\operatorname{const}\cdot|z_1-z_2|^s
\tag{\ast}
\end{equation}
everywhere in $\overline{\mathbf D}$. Let $\Lambda^s(E)$ be the space of functions $f$ continuous on $E$ that satisfy ($\ast$) everywhere on $E$. It is clear that $A^s|_E\subset\Lambda^s(E)$. The set $E$ is said to be $A^s$-interpolating if $A^s|_E=\Lambda^s(E)$.
The article gives necessary and sufficient conditions for a set $E$ to be
interpolating (independently of $s$). Similar results are obtained for $s>1$ and for classes of functions with derivatives in $H^p$.
Bibliography: 18 titles.
			
            
            
            
          
        
      @article{SM_1980_37_1_a6,
     author = {E. M. Dyn'kin},
     title = {Free interpolation sets for {H\"older} classes},
     journal = {Sbornik. Mathematics},
     pages = {97--117},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/}
}
                      
                      
                    E. M. Dyn'kin. Free interpolation sets for H\"older classes. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 97-117. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/
