Free interpolation sets for Hölder classes
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 97-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbf D=\{z,|z|<1\}$, let $E$ be a closed subset of $\overline{\mathbf D}$ and let $0. Let $A^s$ be the space of functions $f$ analytic in $\mathbf D$ and continuous in $\overline{\mathbf D}$ such that \begin{equation} |f(z_1)-f(z_2)|\leqslant\operatorname{const}\cdot|z_1-z_2|^s \tag{\ast} \end{equation} everywhere in $\overline{\mathbf D}$. Let $\Lambda^s(E)$ be the space of functions $f$ continuous on $E$ that satisfy ($\ast$) everywhere on $E$. It is clear that $A^s|_E\subset\Lambda^s(E)$. The set $E$ is said to be $A^s$-interpolating if $A^s|_E=\Lambda^s(E)$. The article gives necessary and sufficient conditions for a set $E$ to be interpolating (independently of $s$). Similar results are obtained for $s>1$ and for classes of functions with derivatives in $H^p$. Bibliography: 18 titles.
@article{SM_1980_37_1_a6,
     author = {E. M. Dyn'kin},
     title = {Free interpolation sets for {H\"older} classes},
     journal = {Sbornik. Mathematics},
     pages = {97--117},
     year = {1980},
     volume = {37},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/}
}
TY  - JOUR
AU  - E. M. Dyn'kin
TI  - Free interpolation sets for Hölder classes
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 97
EP  - 117
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/
LA  - en
ID  - SM_1980_37_1_a6
ER  - 
%0 Journal Article
%A E. M. Dyn'kin
%T Free interpolation sets for Hölder classes
%J Sbornik. Mathematics
%D 1980
%P 97-117
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/
%G en
%F SM_1980_37_1_a6
E. M. Dyn'kin. Free interpolation sets for Hölder classes. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 97-117. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/

[1] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[2] L. Carleson, “Interpolation by bounded analytic functions and the corona problem”, Ann. Math., 76:3 (1962), 547–559 | DOI | MR | Zbl

[3] S. A. Vinogradov, V. P. Khavin, “Svobodnaya interpolyatsiya v $H^\infty$ i nekotorykh drugikh klassakh funktsii, I; II”, Zapiski nauchnykh seminarov LOMI, 47 (1974), 15–54 ; 56 (1976), 12–58 | Zbl | Zbl

[4] N. Alexander, V. A. Taylor, D. L. Williams, “The interpolating sets for $A^\infty$”, J. Math. Anal. Appl., 36:1 (1971), 556–568 | DOI | MR

[5] E. M. Dynkin, S. V. Khruschev, “Interpolyatsiya analiticheskimi funktsiyami, gladkimi vplot do granitsy”, Zapiski nauchnykh seminarov LOMI, 56 (1976), 59–72 | MR

[6] A. M. Kotochigov, “Interpolyatsiya analiticheskimi funktsiyami, gladkimi vplot do granitsy”, Zapiski nauchnykh seminarov LOMI, 30 (1972), 167–169 | Zbl

[7] E. M. Dynkin, “Svobodnaya interpolyatsiya v klassakh Gëldera”, DAN SSSR, 236:4 (1977), 785–788 | MR

[8] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, Moskva, 1963

[9] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, izd-vo “Nauka”, Moskva, 1966 | MR

[10] N. K. Nikolskii, Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza, Trudy matem. in-ta im. V. A. Steklova AN SSSR, SKhKh, 1974 | MR

[11] E. M. Dynkin, “Gladkie funktsii na ploskikh mnozhestvakh”, DAN SSSR, 208:1 (1973), 25–27 | MR

[12] E. M. Dynkin, “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy (Drogobych, 1974), Trudy VII zimnei shkoly, Moskva, 1976, 40–73 | MR

[13] E. M. Dynkin, “Otsenki analiticheskikh funktsii v zhordanovykh oblastyakh”, Zapiski nauchnykh seminarov LOMI, 73 (1977), 70–90 | MR

[14] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, izd-vo “Nauka”, Moskva, 1964 | MR | Zbl

[15] E. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo “Mir”, Moskva, 1973 | MR

[16] B. Malgranzh, Idealy differentsiruemykh funktsii, IL, Moskva, 1968

[17] B. V. Shabat, Vvedenie v kompleksnykh analiz, izd-vo “Nauka”, Moskva, 1969 | MR

[18] V. I. Vasyunin, “Bazisy iz sobstvennykh podprostranstv i neklassicheskie interpolyatsionnye zadachi”, Funkts. analiz, 9:4 (1975), 65–66 | MR | Zbl