Free interpolation sets for H\"older classes
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 97-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf D=\{z,|z|1\}$, let $E$ be a closed subset of $\overline{\mathbf D}$ and let $0$. Let $A^s$ be the space of functions $f$ analytic in $\mathbf D$ and continuous in $\overline{\mathbf D}$ such that \begin{equation} |f(z_1)-f(z_2)|\leqslant\operatorname{const}\cdot|z_1-z_2|^s \tag{\ast} \end{equation} everywhere in $\overline{\mathbf D}$. Let $\Lambda^s(E)$ be the space of functions $f$ continuous on $E$ that satisfy ($\ast$) everywhere on $E$. It is clear that $A^s|_E\subset\Lambda^s(E)$. The set $E$ is said to be $A^s$-interpolating if $A^s|_E=\Lambda^s(E)$. The article gives necessary and sufficient conditions for a set $E$ to be interpolating (independently of $s$). Similar results are obtained for $s>1$ and for classes of functions with derivatives in $H^p$. Bibliography: 18 titles.
@article{SM_1980_37_1_a6,
     author = {E. M. Dyn'kin},
     title = {Free interpolation sets for {H\"older} classes},
     journal = {Sbornik. Mathematics},
     pages = {97--117},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/}
}
TY  - JOUR
AU  - E. M. Dyn'kin
TI  - Free interpolation sets for H\"older classes
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 97
EP  - 117
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/
LA  - en
ID  - SM_1980_37_1_a6
ER  - 
%0 Journal Article
%A E. M. Dyn'kin
%T Free interpolation sets for H\"older classes
%J Sbornik. Mathematics
%D 1980
%P 97-117
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/
%G en
%F SM_1980_37_1_a6
E. M. Dyn'kin. Free interpolation sets for H\"older classes. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 97-117. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a6/