Theorems of Ostrovskii type and invariant subspaces of analytic functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 83-95
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose that $G$ is a convex domain in $\mathbf C$, $H$ the space of functions holomorphic in $G$ endowed with the topology of uniform convergence on compact sets, and $W$ a closed subspace in $H$ invariant with respect to the operator of differentiation and admitting spectral synthesis.
In this paper it is shown that an arbitrary function $f\in W$ may be uniformly approximated by linear combinations of exponential monomials from $W$, not only within $G$ but also in the whole domain of existence of $f$, if the annihilator submodule $I$ of $W$ contains an entire function $\varphi$ of exponential type which on a sequence of circles $|z|=\rho_k$, $\rho_k\uparrow\infty$ as $k\to\infty$, admits the estimate $\ln|\varphi(z)|\leqslant o(|z|)$  ($|z|=\rho_k$, $k\to\infty$).
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_1980_37_1_a5,
     author = {A. Ya. Gil'mutdinova},
     title = {Theorems of {Ostrovskii} type and invariant subspaces of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a5/}
}
                      
                      
                    A. Ya. Gil'mutdinova. Theorems of Ostrovskii type and invariant subspaces of analytic functions. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a5/
