Lattices of varieties of algebras
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 53-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be an associative and commutative ring with 1, $S$ a subsemigroup of the multiplicative semigroup of $A$, not containing divisors of zero, and $\mathfrak X$ some variety of $A$-algebras. A study is made of the homomorphism from the lattice $L(\mathfrak X)$ of all subvarieties of $\mathfrak X$ into the latttice of all varieties of $S^{-1}A$-algebras, which is induced in a certain natural sense by the functor $S^{-1}$. Under one weak restriction on $\mathfrak X$ a description is given of the kernel of this homomorphism, and this makes it possible to establish a good interrelation between the properties of the lattice $L(\mathfrak X)$ and the lattice of varieties of $S^{-1}A$-algebras. These results are applied to prove that a number of varieties of associative and Lie rings have the Specht property. Bibliography: 18 titles.
@article{SM_1980_37_1_a3,
     author = {M. V. Volkov},
     title = {Lattices of varieties of algebras},
     journal = {Sbornik. Mathematics},
     pages = {53--69},
     year = {1980},
     volume = {37},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a3/}
}
TY  - JOUR
AU  - M. V. Volkov
TI  - Lattices of varieties of algebras
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 53
EP  - 69
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_1_a3/
LA  - en
ID  - SM_1980_37_1_a3
ER  - 
%0 Journal Article
%A M. V. Volkov
%T Lattices of varieties of algebras
%J Sbornik. Mathematics
%D 1980
%P 53-69
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_37_1_a3/
%G en
%F SM_1980_37_1_a3
M. V. Volkov. Lattices of varieties of algebras. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a3/

[1] V. A. Artamonov, Reshetki mnogoobrazii lineinykh algebr, Uspekhi matem. nauk, 33, no. 2(200), 1978 | MR | Zbl

[2] V. N. Salii, “Reshetki mnogoobrazii”, Uporyadochennye mnozhestva i reshetki, vyp. 3, izd-vo Saratov. un-ta, Saratov, 1975, 75–82 | MR

[3] A. I. Maltsev, “Ob umnozhenii klassov algebraicheskikh sistem”, Sib. matem. zh., 8:2 (1967), 346–365

[4] M. V. Volkov, “O strukturakh mnogoobrazii kolets”, Vsesoyuz. alg. simp., tezisy dokl., ch. 2, Gomel, 388–389

[5] M. V. Volkov, “Struktury mnogoobrazii algebr”, Vestnik MGU, matem., mekhan., 1978, no. 6

[6] M. V. Volkov, “O konechnoi baziruemosti mnogoobrazii kolets konechnogo indeksa. Issledovaniya po sovremennoi algebre”, Matem. zapiski Ural. un-ta, 10:3 (1977), 26–32 | MR | Zbl

[7] V. A. Andrunakievich, Yu. M. Ryabukhin, “Krucheniya i tsepi Kurosha v algebrakh”, Trudy Mosk. matem. ob-va, 29 (1973), 19–49 | Zbl

[8] I. V. Lvov, “O mnogoobraziyakh assotsiativnykh kolets. 1”, Algebra i logika, 12:3 (1973), 269–297 | MR

[9] I. V. Lvov, “O mnogoobraziyakh assotsiativnykh kolets. 2”, Algebra i logika, 12:6 (1973), 667–688 | MR

[10] Yu. A. Bakhturin, A. Yu. Olshanskii, “Razreshimye pochti krossovy mnogoobraziya kolets Li”, Matem. sb., 100(142) (1976), 384–399 | Zbl

[11] V. A. Artamonov, “Poluprostye mnogoobraziya multioperatornykh algebr. 2”, Izv. VUZov, Matematika, 1971, no. 12, 15–21 | Zbl

[12] G. Birkgof, Teoriya struktur, IL, Moskva, 1952

[13] L. H. Rowen, “On rings with central polinomials”, J. Algebra, 31:3 (1974), 393–426 | DOI | MR | Zbl

[14] G. Pickert, “Zur Übertragung der Kettensätze”, Math. Ann., 121:1 (1949), 100–102 | DOI | MR | Zbl

[15] A. A. Iskander, “The radical in ring varieties”, Acta Sci. Math., 39:3–4 (1977), 291–301 | MR | Zbl

[16] C. M. Bang, K. Mandelberg, “Finite basic theorem for rings and algebras satisfying a central condition”, J. Algebra, 34:1 (1975), 105–113 | DOI | MR | Zbl

[17] M. R. Vaughan-Lee, Some varieties of Lie algebras, D. Phil, thesis, Oxford, 1968

[18] R. K. Amayo, I. Stewart, Infinite-dimensional Lie algebras, Nordhoff Int. Publ., Leyden, 1974 | MR