The asymptotic behavior of orthogonal polynomials
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 39-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{\varphi_{\sigma,n}(z)\}_{n=0}^\infty$ be the system of polynomials orthonormal on the unit circumference with respect to the measure $\sigma$. By way of generalizing and strengthening a number of previous results, we show that if $\ln\sigma'(\theta)\in L^1[0,2\pi]$, $\sigma'(\theta)$ continuous and positive on $[a,b]\subset[0,2\pi]$, and $\omega(\sigma';\tau)_{[a,b]}\tau^{-1}\in L^1[0,b-a]$, then the polynomials $\varphi_{\sigma,n}^*(e^{i\theta})=e^{in\theta}\overline{\varphi_{\sigma,n}(e^{i\theta})}$ converge uniformly in $\theta$, inside $(a,b)$, to the Szegö function. The result so formulated is shown to be definitive. Bibligraphy: 16 titles.
@article{SM_1980_37_1_a2,
     author = {V. M. Badkov},
     title = {The asymptotic behavior of orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {39--51},
     year = {1980},
     volume = {37},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/}
}
TY  - JOUR
AU  - V. M. Badkov
TI  - The asymptotic behavior of orthogonal polynomials
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 39
EP  - 51
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/
LA  - en
ID  - SM_1980_37_1_a2
ER  - 
%0 Journal Article
%A V. M. Badkov
%T The asymptotic behavior of orthogonal polynomials
%J Sbornik. Mathematics
%D 1980
%P 39-51
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/
%G en
%F SM_1980_37_1_a2
V. M. Badkov. The asymptotic behavior of orthogonal polynomials. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/

[1] V. M. Badkov, “Approksimativnye svoistva ryadov Fure po ortogonalnym polinomam”, Uspekhi matem. nauk, 33:4(202) (1978), 51–106 | MR | Zbl

[2] V. M. Badkov, “Skhodimost v srednem i pochti vsyudu ryadov Fure po mnogochlenam, ortogonalnym na otrezke”, Matem. sb., 95(137) (1974), 229–262 | MR | Zbl

[3] G. P. Tolstov, Mera i integral, izd-vo “Nauka”, Moskva, 1976 | MR

[4] Ya. L. Geronimus, Mnogochleny, ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, Moskva, 1958 | Zbl

[5] P. K. Suetin, “Problema V. A. Steklova v teorii ortogonalnykh mnogochlenov”, Itogi nauki i tekhniki. Matem. analiz, 15, VINITI AN SSSR, Moskva, 1977, 5–82 | MR

[6] Ya. L. Geronimus, B. L. Golinskii, “Asimptoticheskie formuly dlya ortogonalnykh mnogochlenov”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozh., 1965, no. 1, 141–163 | MR | Zbl

[7] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962

[8] U. Grenander i G. Segë, Teplitsevy formy i ikh prilozheniya, IL, Moskva, 1961

[9] B. L. Golinskii, “O bystrote skhodimosti posledovatelnosti ortogonalnykh mnogochlenov k predelnoi funktsii”, Ukr. matem. zh., 19:4 (1967), 11–28 | MR | Zbl

[10] B. L. Golinskii, “O dvukh osnovnykh usloviyakh dlya asimptoticheskogo predstavleniya mnogochlenov, ortonormalnykh na edinichnoi okruzhnosti”, Matem. zametki, 15:6 (1974), 847–855 | MR | Zbl

[11] G. Szegö, “Über den asymptotischen Ausdruck von Polynomen, die durch eine Orthogonalität-seigenschaft definiert sind”, Math. Ann., 86:1–2 (1922), 114–139 | DOI | MR | Zbl

[12] B. L. Golinskii, “O lokalnykh predelnykh sootnosheniyakh i asimptoticheskikh formulakh dlya mnogochlenov, ortogonalnykh na edinichnoi okruzhnosti”, Matem. sb., 64(106) (1964), 321–356 | MR | Zbl

[13] B. L. Golinskii, “O lokalnykh i tochechnykh predelnykh sootnosheniyakh i asimptoticheskikh formulakh dlya mnogochlenov, ortonormirovannykh na edinichnoi okruzhnosti”, Issled. po sovr. probl. konstruktiv, teorii funktsii, AN Azerb. SSR, Baku, 1965, 306–312 | MR

[14] B. L. Golinskii, “Printsip lokalizatsii i predelnye sootnosheniya dlya mnogochlenov, ortogonalnykh na edinichnoi okruzhnosti”, Izv. VUZov, matematika, 1968, no. 10, 42–53 | MR | Zbl

[15] B. L. Golinskii, “O ravnomernykh predelnykh lokalnykh sootnosheniyakh dlya ortogonalnykh mnogochlenov”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1969, no. 9, 103–117 | MR | Zbl

[16] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR