The asymptotic behavior of orthogonal polynomials
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 39-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\varphi_{\sigma,n}(z)\}_{n=0}^\infty$ be the system of polynomials orthonormal on the unit circumference with respect to the measure $\sigma$. By way of generalizing and strengthening a number of previous results, we show that if $\ln\sigma'(\theta)\in L^1[0,2\pi]$, $\sigma'(\theta)$ continuous and positive on $[a,b]\subset[0,2\pi]$, and $\omega(\sigma';\tau)_{[a,b]}\tau^{-1}\in L^1[0,b-a]$, then the polynomials $\varphi_{\sigma,n}^*(e^{i\theta})=e^{in\theta}\overline{\varphi_{\sigma,n}(e^{i\theta})}$ converge uniformly in $\theta$, inside $(a,b)$, to the Szegö function. The result so formulated is shown to be definitive. Bibligraphy: 16 titles.
@article{SM_1980_37_1_a2,
     author = {V. M. Badkov},
     title = {The asymptotic behavior of orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {39--51},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/}
}
TY  - JOUR
AU  - V. M. Badkov
TI  - The asymptotic behavior of orthogonal polynomials
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 39
EP  - 51
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/
LA  - en
ID  - SM_1980_37_1_a2
ER  - 
%0 Journal Article
%A V. M. Badkov
%T The asymptotic behavior of orthogonal polynomials
%J Sbornik. Mathematics
%D 1980
%P 39-51
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/
%G en
%F SM_1980_37_1_a2
V. M. Badkov. The asymptotic behavior of orthogonal polynomials. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a2/