Fractional powers of a nonlinear analytic differential operator
Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 9-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear operator $F(u)=MB(Lu)$ is considered, in which $L$ is an invertible closed linear operator with an everywhere dense domain of definition in a Banach space $E$, $B$ is an analytic operator satisfying strong continuity requirements with respect to the action of $L$ as well as the conditions $B(0)=0$ and $B'(0)=I$, and $M>1$ is an auxiliary number greater than one. Local and global theorems are obtained on the representation of $F$ in the form $F=\mathscr E\circ ML\circ\mathscr E^{-1}$, where $\mathscr E$ and $\mathscr E^{-1}$ are analytic operators, and the real and complex powers $F^\alpha=\mathscr E\circ(ML)^\alpha\circ\mathscr E^{-1}$ are defined. The existence of complex powers is used to obtain an expression for $g(F^{-1}(h))$ in terms of the $g(F^j(h))$ ($j=0,1,\dots$), where $g$ is a functional. It is proved that the results are applicable to nonlinear elliptic differential operators on spaces of periodic functions. Bibliography: 16 titles.
@article{SM_1980_37_1_a1,
     author = {A. V. Babin},
     title = {Fractional powers of a~nonlinear analytic differential operator},
     journal = {Sbornik. Mathematics},
     pages = {9--38},
     year = {1980},
     volume = {37},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_1_a1/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - Fractional powers of a nonlinear analytic differential operator
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 9
EP  - 38
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_1_a1/
LA  - en
ID  - SM_1980_37_1_a1
ER  - 
%0 Journal Article
%A A. V. Babin
%T Fractional powers of a nonlinear analytic differential operator
%J Sbornik. Mathematics
%D 1980
%P 9-38
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_37_1_a1/
%G en
%F SM_1980_37_1_a1
A. V. Babin. Fractional powers of a nonlinear analytic differential operator. Sbornik. Mathematics, Tome 37 (1980) no. 1, pp. 9-38. http://geodesic.mathdoc.fr/item/SM_1980_37_1_a1/

[1] F. Khartman, Obyknovennye differentsialnye uravneniya, izd-vo “Mir”, Moskva, 1970 | MR

[2] B. Ware, “Infinite dimensional versions of two theorems of Carl Siegel”, Bull. Amer. Math. Soc., 82:4 (1976), 613–615 | DOI | MR | Zbl

[3] H. V. Nikolenko, “Polnaya integriruemost nelineinogo uravneniya Shredingera”, DAN SSSR, 227 issue 4 (1976), 235–238 | MR

[4] V. I. Sedenko, “O normalnoi forme nelineinykh uravnenii v chastnykh proizvodnykh na veschestvennoi osi”, Matem. sb., 105(147) (1978), 121–127 | MR | Zbl

[5] M. I. Vishik, A. V. Fursikov, “Analiticheskie pervye integraly nelineinykh parabolicheskikh v smysle I. G. Petrovskogo sistem differentsialnykh uravnenii i ikh prilozheniya”, Uspekhi matem. nauk, XXIX:2(176) (1974), 123–153

[6] Yu. Mozer, “Bystro skhodyaschiisya metod iteratsii i nelineinye differentsialnye uravneniya”, Uspekhi matem. nauk, XXIII:4(142) (1968), 179–238 | MR

[7] A. V. Babin, “Formula, vyrazhayuschaya reshenie differentsialnogo uravneniya s analiticheskimi koeffitsientami na mnogoobrazii bez kraya cherez dannye zadachi”, Matem. sb., 101(143) (1976), 610–638 | MR | Zbl

[8] A. V. Babin, “Vyrazhenie $A^{-1}$ cherez iteratsii neogranichennogo samosopryazhennogo operatora $A$ na analiticheskikh vektorakh”, Funkts. analiz, 11:4 (1977), 3–5 | MR | Zbl

[9] A. V. Babin, “Vyrazhenie resheniya differentsialnogo uravneniya cherez iteratsii differentsialnykh operatorov”, Matem. sb., 105(147) (1978), 467–484 | MR | Zbl

[10] K. L. Zigel, Lektsii po nebesnoi mekhanike, IL, Moskva, 1959

[11] A. V. Babin, “Konechnomernost yadra i koyadra kvazilineinykh ellipticheskikh otobrazhenii”, Matem. sb., 93(135) (1974), 422–456 | MR

[12] M. I. Vishik, “Kvazilineinye silno ellipticheskie sistemy differentsialnykh uravnenii, imeyuschie divergentnuyu formu”, Trudy Mosk. matem. o-va, 12, 1963, 125–184 | Zbl

[13] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo “Nauka”, Moskva, 1973 | MR

[14] Yu. A. Dubinskii, “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, Moskva, 1976, 5–130

[15] I. V. Skrypnik, “Razreshimost i svoistva reshenii nelineinykh ellipticheskikh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, Moskva, 1976, 131–254

[16] M. I. Vishik, A. V. Fursikov, “Nekotorye voprosy teorii nelineinykh ellipticheskikh i parabolicheskikh uravnenii”, Matem. sb., 94(136) (1974), 300–334 | Zbl