Finite groups with a~Frobenius subgroup
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 577-601

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $M$ denotes a $CC$-subgroup of order $m$ of a group $G$ which is different from its normalizer in $G$. A criterion for the simplicity of a group is obtained which includes the theorems of Feit and Ito on Zassenhaus groups of even degree and which is used to prove the following Theorem. If $|G:N(M)|=m+1$ and the order of the centralizer of each nonidentity element of $N(M)$ in $G$ is odd, then $G\simeq PSL(2,m)$. It is proved that if $M$ has a complement $B$ in $G$ and if $|M|-1$ does not divide $|B|$, then $N(M)$ has a nilpotent invariant complement in $G$, and if $M$ is complemented by a Frobenius subgroup in the simple group $G$, then $G\simeq PSL(2,2^n)$, $n>1$. Related to the results of Brauer, Leonard, and Sibley on finite linear groups is the following Theorem. {\it If the degree of each irreducible constituent of some faithful complex character $\varphi$ of $G$ is less than $(m-1)/2$, then either $M\lhd G$ or $G\simeq Sz(2^{2n+1})$, $n\geqslant1$.} Other results connected with the above theorems are also obtained. Bibliography: 24 titles.
@article{SM_1980_36_4_a7,
     author = {A. V. Romanovskii},
     title = {Finite groups with {a~Frobenius} subgroup},
     journal = {Sbornik. Mathematics},
     pages = {577--601},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a7/}
}
TY  - JOUR
AU  - A. V. Romanovskii
TI  - Finite groups with a~Frobenius subgroup
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 577
EP  - 601
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_4_a7/
LA  - en
ID  - SM_1980_36_4_a7
ER  - 
%0 Journal Article
%A A. V. Romanovskii
%T Finite groups with a~Frobenius subgroup
%J Sbornik. Mathematics
%D 1980
%P 577-601
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_4_a7/
%G en
%F SM_1980_36_4_a7
A. V. Romanovskii. Finite groups with a~Frobenius subgroup. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 577-601. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a7/