On Steklov's conjecture in the theory of orthogonal polynomials
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 549-575

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper constructs an example of a weight function $\rho(x)$ on the interval $[-1, 1]$, such that $\rho(x)\geqslant\delta > 0$, $x\in[-1, 1]$, whereas the corresponding sequence of orthonormal polynomials is unbounded at $0$. Bibliography: 6 titles.
@article{SM_1980_36_4_a6,
     author = {E. A. Rakhmanov},
     title = {On {Steklov's} conjecture in the theory of orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {549--575},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a6/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - On Steklov's conjecture in the theory of orthogonal polynomials
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 549
EP  - 575
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_4_a6/
LA  - en
ID  - SM_1980_36_4_a6
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T On Steklov's conjecture in the theory of orthogonal polynomials
%J Sbornik. Mathematics
%D 1980
%P 549-575
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_4_a6/
%G en
%F SM_1980_36_4_a6
E. A. Rakhmanov. On Steklov's conjecture in the theory of orthogonal polynomials. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 549-575. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a6/