On Steklov's conjecture in the theory of orthogonal polynomials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 549-575
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper constructs an example of a weight function $\rho(x)$ on the interval $[-1, 1]$, such that $\rho(x)\geqslant\delta > 0$, $x\in[-1, 1]$, whereas the corresponding sequence of orthonormal polynomials is unbounded at $0$.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1980_36_4_a6,
     author = {E. A. Rakhmanov},
     title = {On {Steklov's} conjecture in the theory of orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {549--575},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a6/}
}
                      
                      
                    E. A. Rakhmanov. On Steklov's conjecture in the theory of orthogonal polynomials. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 549-575. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a6/
