Maximal orders in a finite-dimensional central simple algebra over a valuation ring of height 1
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 483-493 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper consists of two sections. In § maximal, almost maximal, and complete valuation rings are characterized in terms of the decomposability of torsion-free modules of rank 2. In § 2 an attempt is made to describe the maximal $V$-orders in the matrix ring $K_n$, where $V$ is a valuation ring of height 1 in the field $K$. Also, § 2 contains a generalization to a matrix algebra over a field of the well-known fact that a maximal subring of a field is either a field or a valuation ring of height 1. Bibliography: 9 titles.
@article{SM_1980_36_4_a2,
     author = {N. I. Dubrovin},
     title = {Maximal orders in a~finite-dimensional central simple algebra over a~valuation ring of height~1},
     journal = {Sbornik. Mathematics},
     pages = {483--493},
     year = {1980},
     volume = {36},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a2/}
}
TY  - JOUR
AU  - N. I. Dubrovin
TI  - Maximal orders in a finite-dimensional central simple algebra over a valuation ring of height 1
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 483
EP  - 493
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_4_a2/
LA  - en
ID  - SM_1980_36_4_a2
ER  - 
%0 Journal Article
%A N. I. Dubrovin
%T Maximal orders in a finite-dimensional central simple algebra over a valuation ring of height 1
%J Sbornik. Mathematics
%D 1980
%P 483-493
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1980_36_4_a2/
%G en
%F SM_1980_36_4_a2
N. I. Dubrovin. Maximal orders in a finite-dimensional central simple algebra over a valuation ring of height 1. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a2/

[1] I. Kaplansky, “Modules over Dedekind ring and valuations ring”, Trans. Amer. Math. Soc., 72 (1952), 327–340 | DOI | MR | Zbl

[2] E. Matlis, “Delomposable modules”, Trans. Amer. Math. Soc., 125 (1966), 147–179 | DOI | MR | Zbl

[3] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl

[4] D. T. Gill, “Almost maximal valuation rings”, J. London Math. Soc., Ser. 2, 4:1 (1971), 140–146 | DOI | MR | Zbl

[5] G. B. Klatt, L. S. Levy, “Pre-self-injective rings”, Trans. Amer. Math. Soc., 137 (1968), 407–419 | DOI | MR

[6] O. F. G. Schilling, The theory of valuations, Math. Surveyes, 4, Amer. Math. Soc., Providence, RI, 1950, MR/3, 316 | MR

[7] J. J. Kelleher, “Totally ordered sets of ideals in rings of analytic functions”, J. reine und angew. Math., 278–279 (1975), 118–156 | MR

[8] H. Burbaki, Kommutativnaya algebra, izd-vo “Mir”, Moskva, 1971 | MR

[9] Yu. P. Razmyslov, “Ob odnoi probleme Kaplanskogo”, Izv. AN SSSR, seriya matem., 37:3 (1973), 483–501 | MR | Zbl