On dimension theory for complexes
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 469-481

Voir la notice de l'article provenant de la source Math-Net.Ru

Passage from the category of modules to the derived category gives insight into some classical results of homological dimension theory, and also yields a proof of the nondegeneracy of the Yoneda multiplication $\operatorname{Ext}_A^p(k,\,\cdot\,)\times\operatorname{Ext}_A^{n-p}(\,\cdot\,,k)\to\operatorname{Ext}_A^n(k,k)=k$, where the argument is a noetherian module (or a finite complex with noetherian homology) and $A$ is a regular local ring. Bibliography: 9 titles.
@article{SM_1980_36_4_a1,
     author = {A. F. Ivanov},
     title = {On dimension theory for complexes},
     journal = {Sbornik. Mathematics},
     pages = {469--481},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a1/}
}
TY  - JOUR
AU  - A. F. Ivanov
TI  - On dimension theory for complexes
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 469
EP  - 481
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_4_a1/
LA  - en
ID  - SM_1980_36_4_a1
ER  - 
%0 Journal Article
%A A. F. Ivanov
%T On dimension theory for complexes
%J Sbornik. Mathematics
%D 1980
%P 469-481
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_4_a1/
%G en
%F SM_1980_36_4_a1
A. F. Ivanov. On dimension theory for complexes. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 469-481. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a1/