On dimension theory for complexes
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 469-481
Voir la notice de l'article provenant de la source Math-Net.Ru
Passage from the category of modules to the derived category gives insight into some classical results of homological dimension theory, and also yields a proof of the nondegeneracy of the Yoneda multiplication $\operatorname{Ext}_A^p(k,\,\cdot\,)\times\operatorname{Ext}_A^{n-p}(\,\cdot\,,k)\to\operatorname{Ext}_A^n(k,k)=k$, where the argument is a noetherian module (or a finite complex with noetherian homology) and $A$ is a regular local ring.
Bibliography: 9 titles.
@article{SM_1980_36_4_a1,
author = {A. F. Ivanov},
title = {On dimension theory for complexes},
journal = {Sbornik. Mathematics},
pages = {469--481},
publisher = {mathdoc},
volume = {36},
number = {4},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a1/}
}
A. F. Ivanov. On dimension theory for complexes. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 469-481. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a1/