Local measures connected with Jacquet–Langlands cusp forms over fields of $CM$-type
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 449-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper local measures are associated to Dirichlet series of certain cusp forms on $GL(2)$ over a $CM$-field. In certain cases the measures are proved to be bounded. This guarantees the existence of $p$-adic Mellin transform. Bibliograhy: 4 titles.
@article{SM_1980_36_4_a0,
     author = {P. F. Kurchanov},
     title = {Local measures connected with {Jacquet{\textendash}Langlands} cusp forms over fields of $CM$-type},
     journal = {Sbornik. Mathematics},
     pages = {449--467},
     year = {1980},
     volume = {36},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a0/}
}
TY  - JOUR
AU  - P. F. Kurchanov
TI  - Local measures connected with Jacquet–Langlands cusp forms over fields of $CM$-type
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 449
EP  - 467
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_4_a0/
LA  - en
ID  - SM_1980_36_4_a0
ER  - 
%0 Journal Article
%A P. F. Kurchanov
%T Local measures connected with Jacquet–Langlands cusp forms over fields of $CM$-type
%J Sbornik. Mathematics
%D 1980
%P 449-467
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1980_36_4_a0/
%G en
%F SM_1980_36_4_a0
P. F. Kurchanov. Local measures connected with Jacquet–Langlands cusp forms over fields of $CM$-type. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 449-467. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a0/

[1] R. Godeman, “Zametki po teorii Zhake– Lenglendsa”, Matematika, 18:2 (1974), 28–78

[2] E. Zhake, R. Lenglends, Avtomorfnye formy na $GL(2)$, izd-vo “Mir”, Moskva, 1973 | MR

[3] Yu. I. Manin, “Nearkhimedovo integrirovanie i $p$-adicheskie funktsii Zhake–Lenglendsa”, Uspekhi matem. nauk, XXXI:1(185) (1976), 5–53 | MR

[4] A. Weil, “Dirichlet Series and automorphic Forms”, Lecture Notes in Math., 189, Springer-Verlag, Berlin, 1971