Local measures connected with Jacquet–Langlands cusp forms over fields of $CM$-type
Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 449-467
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper local measures are associated to Dirichlet series of certain cusp forms on $GL(2)$ over a $CM$-field. In certain cases the measures are proved to be bounded. This guarantees the existence of $p$-adic Mellin transform. Bibliograhy: 4 titles.
@article{SM_1980_36_4_a0,
author = {P. F. Kurchanov},
title = {Local measures connected with {Jacquet{\textendash}Langlands} cusp forms over fields of $CM$-type},
journal = {Sbornik. Mathematics},
pages = {449--467},
year = {1980},
volume = {36},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_4_a0/}
}
P. F. Kurchanov. Local measures connected with Jacquet–Langlands cusp forms over fields of $CM$-type. Sbornik. Mathematics, Tome 36 (1980) no. 4, pp. 449-467. http://geodesic.mathdoc.fr/item/SM_1980_36_4_a0/
[1] R. Godeman, “Zametki po teorii Zhake– Lenglendsa”, Matematika, 18:2 (1974), 28–78
[2] E. Zhake, R. Lenglends, Avtomorfnye formy na $GL(2)$, izd-vo “Mir”, Moskva, 1973 | MR
[3] Yu. I. Manin, “Nearkhimedovo integrirovanie i $p$-adicheskie funktsii Zhake–Lenglendsa”, Uspekhi matem. nauk, XXXI:1(185) (1976), 5–53 | MR
[4] A. Weil, “Dirichlet Series and automorphic Forms”, Lecture Notes in Math., 189, Springer-Verlag, Berlin, 1971