Pontryagin manifolds
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 441-447

Voir la notice de l'article provenant de la source Math-Net.Ru

The Pontryagin manifold $P_{n,k}$ is the set of $(k+1)$-frames in $\mathbf R^n$ such that the dimension of the linear span of the vectors in the frame is no less than $k$. In the theory of Pontryagin classes these manifolds play a role analogous to that of the Stiefel manifolds in the theory of Stiefel–Whitney classes. The present paper examines the homotopy type of these manifolds. The results are then applied to study the connection between immersions and $k$-immersions. Bibliography: 8 titles.
@article{SM_1980_36_3_a9,
     author = {N. V. Ivanov},
     title = {Pontryagin manifolds},
     journal = {Sbornik. Mathematics},
     pages = {441--447},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/}
}
TY  - JOUR
AU  - N. V. Ivanov
TI  - Pontryagin manifolds
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 441
EP  - 447
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/
LA  - en
ID  - SM_1980_36_3_a9
ER  - 
%0 Journal Article
%A N. V. Ivanov
%T Pontryagin manifolds
%J Sbornik. Mathematics
%D 1980
%P 441-447
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/
%G en
%F SM_1980_36_3_a9
N. V. Ivanov. Pontryagin manifolds. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 441-447. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/