Pontryagin manifolds
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 441-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Pontryagin manifold $P_{n,k}$ is the set of $(k+1)$-frames in $\mathbf R^n$ such that the dimension of the linear span of the vectors in the frame is no less than $k$. In the theory of Pontryagin classes these manifolds play a role analogous to that of the Stiefel manifolds in the theory of Stiefel–Whitney classes. The present paper examines the homotopy type of these manifolds. The results are then applied to study the connection between immersions and $k$-immersions. Bibliography: 8 titles.
@article{SM_1980_36_3_a9,
     author = {N. V. Ivanov},
     title = {Pontryagin manifolds},
     journal = {Sbornik. Mathematics},
     pages = {441--447},
     year = {1980},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/}
}
TY  - JOUR
AU  - N. V. Ivanov
TI  - Pontryagin manifolds
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 441
EP  - 447
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/
LA  - en
ID  - SM_1980_36_3_a9
ER  - 
%0 Journal Article
%A N. V. Ivanov
%T Pontryagin manifolds
%J Sbornik. Mathematics
%D 1980
%P 441-447
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/
%G en
%F SM_1980_36_3_a9
N. V. Ivanov. Pontryagin manifolds. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 441-447. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a9/

[1] V. A. Rokhlin, “Vnutrennee opredelenie kharakteristicheskikh tsiklov Pontryagina”, DAN SSSR, 84:3 (1952), 449–452 | Zbl

[2] L. S. Pontryagin, “Kharakteristicheskie tsikly differentsiruemykh mnogoobrazii”, Matem. sb., 21(63) (1947), 233–284 | MR | Zbl

[3] L. S. Pontryagin, “Vektornye polya na mnogoobraziyakh”, Matem. sb., 24(66) (1949), 129–162 | MR | Zbl

[4] Wu Wen-Tsun, “Sur les classes caractéristiques des structures fibrées spheriques”, Actual Sci. Ind., 1183 (1952), 1–89

[5] A. Borel, “Sur les cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts”, Ann. Math., 57 (1953), 115–207 | DOI | MR | Zbl

[6] J.-P. Serre, “Croupes d'homotopie et classes de groupes abèliens”, Ann. Math., 58 (1953), 258–294 | DOI | MR | Zbl

[7] M. L. Gromov, “Stabilnye otobrazheniya sloenii v mnogoobraziya”, Izv. AN SSSR, seriya matem., 33 (1969), 707–734 | MR | Zbl

[8] N. V. Ivanov, “Mnogoobraziya Pontryagina”, VII Vsesoyuznaya topologicheskaya konferentsiya, tezisy dokladov i soobschenii, Minsk, 1977, 85