On the summability to infinity of trigonometric series and series in the Walsh system
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 427-439

Voir la notice de l'article provenant de la source Math-Net.Ru

A particular result of this paper is that there exists a trigonometric series $$ \sum_{k=1}^\infty a_k\cos n_kx+b_k\sin n_kx\qquad(n_1\cdots) $$ which is almost everywhere on $(0,2\pi)$ summable to $+\infty$ by all methods $(C,\alpha>0)$ and by the method $A$; moreover $$ \sum_{k=1}^\infty|a_k|^{2+\varepsilon}+|b_k|^{2+\varepsilon}+\infty $$ for any $\varepsilon>0$, and also $\sum_{k=1}^\infty1/n_k+\infty$. An analogous assertion is proved for series in the Walsh system. Bibliography: 13 titles.
@article{SM_1980_36_3_a8,
     author = {L. A. Shaginyan},
     title = {On the summability to infinity of trigonometric series and series in the {Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {427--439},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/}
}
TY  - JOUR
AU  - L. A. Shaginyan
TI  - On the summability to infinity of trigonometric series and series in the Walsh system
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 427
EP  - 439
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/
LA  - en
ID  - SM_1980_36_3_a8
ER  - 
%0 Journal Article
%A L. A. Shaginyan
%T On the summability to infinity of trigonometric series and series in the Walsh system
%J Sbornik. Mathematics
%D 1980
%P 427-439
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/
%G en
%F SM_1980_36_3_a8
L. A. Shaginyan. On the summability to infinity of trigonometric series and series in the Walsh system. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 427-439. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/