On the summability to infinity of trigonometric series and series in the Walsh system
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 427-439
Voir la notice de l'article provenant de la source Math-Net.Ru
A particular result of this paper is that there exists a trigonometric series
$$
\sum_{k=1}^\infty a_k\cos n_kx+b_k\sin n_kx\qquad(n_1\cdots)
$$
which is almost everywhere on $(0,2\pi)$ summable to $+\infty$ by all methods $(C,\alpha>0)$ and by the method $A$; moreover
$$
\sum_{k=1}^\infty|a_k|^{2+\varepsilon}+|b_k|^{2+\varepsilon}+\infty
$$
for any $\varepsilon>0$, and also $\sum_{k=1}^\infty1/n_k+\infty$.
An analogous assertion is proved for series in the Walsh system.
Bibliography: 13 titles.
@article{SM_1980_36_3_a8,
author = {L. A. Shaginyan},
title = {On the summability to infinity of trigonometric series and series in the {Walsh} system},
journal = {Sbornik. Mathematics},
pages = {427--439},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/}
}
L. A. Shaginyan. On the summability to infinity of trigonometric series and series in the Walsh system. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 427-439. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/