On the summability to infinity of trigonometric series and series in the Walsh system
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 427-439 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A particular result of this paper is that there exists a trigonometric series $$ \sum_{k=1}^\infty a_k\cos n_kx+b_k\sin n_kx\qquad(n_1<n_2<\cdots) $$ which is almost everywhere on $(0,2\pi)$ summable to $+\infty$ by all methods $(C,\alpha>0)$ and by the method $A$; moreover $$ \sum_{k=1}^\infty|a_k|^{2+\varepsilon}+|b_k|^{2+\varepsilon}<+\infty $$ for any $\varepsilon>0$, and also $\sum_{k=1}^\infty1/n_k<+\infty$. An analogous assertion is proved for series in the Walsh system. Bibliography: 13 titles.
@article{SM_1980_36_3_a8,
     author = {L. A. Shaginyan},
     title = {On the summability to infinity of trigonometric series and series in the {Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {427--439},
     year = {1980},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/}
}
TY  - JOUR
AU  - L. A. Shaginyan
TI  - On the summability to infinity of trigonometric series and series in the Walsh system
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 427
EP  - 439
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/
LA  - en
ID  - SM_1980_36_3_a8
ER  - 
%0 Journal Article
%A L. A. Shaginyan
%T On the summability to infinity of trigonometric series and series in the Walsh system
%J Sbornik. Mathematics
%D 1980
%P 427-439
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/
%G en
%F SM_1980_36_3_a8
L. A. Shaginyan. On the summability to infinity of trigonometric series and series in the Walsh system. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 427-439. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a8/

[1] N. N. Luzin, Integral i trigonometricheskii ryad, Gostekhizdat, Moskva–Leningrad, 1951 | MR

[2] I. I. Privalov, O differentsirovanii ryadov Fure, Matem. sb., 30, no. 2, 1916 | Zbl

[3] D. E. Menshov, “Sur la représentation des fonctions mesurables par des séries trigonometriques”, Matem. sb., 9(51) (1941), 667–692 | MR

[4] A. A. Talalyan, “Predstavlenie izmerimykh funktsii ryadami”, Uspekhi matem. nauk, XV:5(95) (1960), 77–140 | MR

[5] D. E. Menshov, “Sur la convergence et la summation des séries de fonctions orthogonales”, Bull. Soc. Math. France, 64 (1936), 147–170 | MR

[6] J. J. Price, “Sparse subsets of orthonormal systems”, Proc. Amer. Math. Soc., 35:1 (1972) | DOI | MR

[7] A. Zigmund, Trigonometricheskie ryady, t. I, izd-vo “Mir”, Moskva, 1965

[8] N. N. Luzin, I. I. Privalov, O edinstvennosti i mnozhestvennosti analiticheskikh funktsii, Sobr. soch., t. 1, izd. AN SSSR, Moskva, 1953

[9] F. G. Arutyunyan, “Predstavlenie funktsii kratnymi ryadami”, DAN Arm. SSR, LXIV:2 (1977), 72–76

[10] N. B. Pogosyan, “Predstavlenie izmerimykh funktsii ortogonalnymi ryadami”, Matem. sb., 98(140) (1975), 102–112 | Zbl

[11] S. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, Moskva, 1958

[12] G. Khardi, Raskhodyaschiesya ryady, IL, Moskva, 1951

[13] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR