An analogue of the Thom space for maps with a~singularity of type~$\Sigma^1$
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 405-426

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there is constructed a space $X(k)$, the $(n+k)$th homotopy group of which is interpreted as the cobordism group of $S$-maps of $n$-dimensional manifolds into $\mathbf R^{n+k}$. From the construction of $X(k)$ and its analogues we derive corollaries concerning the cobordism group of immersions in the metastable range of dimensions. Figures: 2. Bibliography: 8 titles.
@article{SM_1980_36_3_a7,
     author = {A. Sz\'{u}cs},
     title = {An analogue of the {Thom} space for maps with a~singularity of type~$\Sigma^1$},
     journal = {Sbornik. Mathematics},
     pages = {405--426},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a7/}
}
TY  - JOUR
AU  - A. Szűcs
TI  - An analogue of the Thom space for maps with a~singularity of type~$\Sigma^1$
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 405
EP  - 426
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a7/
LA  - en
ID  - SM_1980_36_3_a7
ER  - 
%0 Journal Article
%A A. Szűcs
%T An analogue of the Thom space for maps with a~singularity of type~$\Sigma^1$
%J Sbornik. Mathematics
%D 1980
%P 405-426
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a7/
%G en
%F SM_1980_36_3_a7
A. Szűcs. An analogue of the Thom space for maps with a~singularity of type~$\Sigma^1$. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 405-426. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a7/