Uniform rational approximations of functions of class~$V_r$
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 389-403

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V_r$ denote the set of functions $f$, defined on a finite interval $[a,b]$, for which $f^{(r-1)}$ is absolutely continuous on $[a,b]$ and is a primitive of a function of bounded variation; let $R_n(f)$ denote the best uniform approximation of $f$ by rational functions of order $n$. It is shown that $R_n(f)=o(n^{-r-1})$ for every $f\in V_r$ $(r\geqslant1)$, and that this estimate is of best possible order for the class $V_r$. Bibliography: 13 titles.
@article{SM_1980_36_3_a6,
     author = {P. P. Petrushev},
     title = {Uniform rational approximations of functions of class~$V_r$},
     journal = {Sbornik. Mathematics},
     pages = {389--403},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/}
}
TY  - JOUR
AU  - P. P. Petrushev
TI  - Uniform rational approximations of functions of class~$V_r$
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 389
EP  - 403
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/
LA  - en
ID  - SM_1980_36_3_a6
ER  - 
%0 Journal Article
%A P. P. Petrushev
%T Uniform rational approximations of functions of class~$V_r$
%J Sbornik. Mathematics
%D 1980
%P 389-403
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/
%G en
%F SM_1980_36_3_a6
P. P. Petrushev. Uniform rational approximations of functions of class~$V_r$. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 389-403. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/