Uniform rational approximations of functions of class $V_r$
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 389-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $V_r$ denote the set of functions $f$, defined on a finite interval $[a,b]$, for which $f^{(r-1)}$ is absolutely continuous on $[a,b]$ and is a primitive of a function of bounded variation; let $R_n(f)$ denote the best uniform approximation of $f$ by rational functions of order $n$. It is shown that $R_n(f)=o(n^{-r-1})$ for every $f\in V_r$ $(r\geqslant1)$, and that this estimate is of best possible order for the class $V_r$. Bibliography: 13 titles.
@article{SM_1980_36_3_a6,
     author = {P. P. Petrushev},
     title = {Uniform rational approximations of functions of class~$V_r$},
     journal = {Sbornik. Mathematics},
     pages = {389--403},
     year = {1980},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/}
}
TY  - JOUR
AU  - P. P. Petrushev
TI  - Uniform rational approximations of functions of class $V_r$
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 389
EP  - 403
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/
LA  - en
ID  - SM_1980_36_3_a6
ER  - 
%0 Journal Article
%A P. P. Petrushev
%T Uniform rational approximations of functions of class $V_r$
%J Sbornik. Mathematics
%D 1980
%P 389-403
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/
%G en
%F SM_1980_36_3_a6
P. P. Petrushev. Uniform rational approximations of functions of class $V_r$. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 389-403. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a6/

[1] P. Szüsz, P. Turan, “On the constructive theory of functions. II”, Studia Sci. Math. Hung., 1 yr 1966, 315–322 | MR | Zbl

[2] G. Freud, “Über die Approximation reeler Funktionen durch rationale gebrochene Funktionen”, Acta Math. Acad. Sci. Hung., 17 (1966), 313–324 | DOI | MR | Zbl

[3] D. Newman, “Rational approximation to $|x|$”, Michigan Math. J., 11 (1964), 11–14 | DOI | MR | Zbl

[4] V. A. Popov, “Uniform rational approximation of the class $V_r$ and its applications”, Acta Math. Acad. Sci. Hung., 29 (1977), 119–129 | DOI | MR | Zbl

[5] “On rational approximation of differentiable functions”, Studia Sci. Math. Hung., 5 (1970), 437–439 | MR

[6] V. A. Popov, P. P. Petrushev, “Tochnyi poryadok nailuchshego ravnomernogo priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Matem. sb., 103(145) (1977), 285–292 | Zbl

[7] P. P. Petrushev, “Ratsionalnye priblizheniya v khausdorfovoi metrike”, Doklady BAN, 31 (1978), 155–158 | MR | Zbl

[8] Bl. Sendov, V. A. Popov, “Ob approksimatsii splain-funktsiyami”, Doklady BAN, 23 (1970), 755–758 | MR | Zbl

[9] P. P. Petrushev, “Ravnomernye ratsionalnye approksimatsii funktsii klassa $V_r$”, Doklady BAN, 1979

[10] Bl. Sendov, “Nekotorye voprosy teorii priblizhenii funktsii i mnozhestv v khausdorfovoi metrike”, Uspekhi matem. nauk, XXIV:5(149) (1969), 141–178 | MR

[11] J. Schoenberg, On spline functions, Inequalities, New York–London, 1967 | MR

[12] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matem. sb., 73(115) (1967), 630–638 | Zbl

[13] G. G. Khardi, Dzh. E. Littlvud i G. Polna, Neravenstva, IL, Moskva, 1948