Imbedding theorems and compactness for spaces of Sobolev type with weights
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 331-349
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article weight estimates are obtained for the intermediate derivatives in spaces of functions which are $p$th power summable together with their gradient of order $l$ over a domain $\Omega$ with respect to a weight which degenerates on the boundary of $\Omega$. In particular, these estimates imply the boundedness and compactness of the corresponding imbeddings.
Bibliography: 6 titles.
@article{SM_1980_36_3_a3,
author = {P. I. Lizorkin and M. Otelbaev},
title = {Imbedding theorems and compactness for spaces of {Sobolev} type with weights},
journal = {Sbornik. Mathematics},
pages = {331--349},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a3/}
}
P. I. Lizorkin; M. Otelbaev. Imbedding theorems and compactness for spaces of Sobolev type with weights. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 331-349. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a3/