Imbedding theorems and compactness for spaces of Sobolev type with weights
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 331-349

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article weight estimates are obtained for the intermediate derivatives in spaces of functions which are $p$th power summable together with their gradient of order $l$ over a domain $\Omega$ with respect to a weight which degenerates on the boundary of $\Omega$. In particular, these estimates imply the boundedness and compactness of the corresponding imbeddings. Bibliography: 6 titles.
@article{SM_1980_36_3_a3,
     author = {P. I. Lizorkin and M. Otelbaev},
     title = {Imbedding theorems and compactness for spaces of {Sobolev} type with weights},
     journal = {Sbornik. Mathematics},
     pages = {331--349},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a3/}
}
TY  - JOUR
AU  - P. I. Lizorkin
AU  - M. Otelbaev
TI  - Imbedding theorems and compactness for spaces of Sobolev type with weights
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 331
EP  - 349
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a3/
LA  - en
ID  - SM_1980_36_3_a3
ER  - 
%0 Journal Article
%A P. I. Lizorkin
%A M. Otelbaev
%T Imbedding theorems and compactness for spaces of Sobolev type with weights
%J Sbornik. Mathematics
%D 1980
%P 331-349
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a3/
%G en
%F SM_1980_36_3_a3
P. I. Lizorkin; M. Otelbaev. Imbedding theorems and compactness for spaces of Sobolev type with weights. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 331-349. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a3/