, and let the modulus of continuity $\omega(\delta)$ be such that the series $\sum_{n=1}^\infty n^{1/p-1}\omega(1/n)$ ($1 ) diverges. Then in the class $H_p^{\omega}$ there is a bounded function $f$ with the following properties: 1) $f$ cannot be altered on a set of measure zero so as to obtain a function continuous at even one point. 2) If $\{h_k\}$ is an arbitrary positive sequence with $h_k\to 0$, then there is a set $E$ of second category such that the sequence $(2h_k)^{-1}\int_{x-h_k}^{x+h_k}f(t)\,dt$ diverges at each point $x\in E$. 3) The partial sums $S_n(f;x)$ of the Fourier series of $f$ are uniformly bounded. 4) For any sequence $\{n_k\}$, $n_k\to\infty$, there is a set $E$ of second category such that $S_{n_k}(f;x)$ diverges for each $x\in E$. Bibliography: 16 titles.
@article{SM_1980_36_3_a1,
author = {V. I. Kolyada},
title = {On~the essential continuity of summable functions},
journal = {Sbornik. Mathematics},
pages = {301--322},
year = {1980},
volume = {36},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a1/}
}
V. I. Kolyada. On the essential continuity of summable functions. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 301-322. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a1/
[1] P. L. Ulyanov, “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 72(114) (1967), 193–224
[2] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(98) (1958), 53–84
[3] Ya. L. Geronimus, “O nekotorykh svoistvakh funktsii klassa $L_p$”, Izv. VUZov, Matematika,, 1958, no. 1, 24–32 | MR | Zbl
[4] V. I. Kolyada, “O vlozhenii v klassy $\varphi(L)$”, Izv. AN SSSR, seriya matem., 39 (1975), 418–437 | Zbl
[5] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105) (1964), 356–391
[6] K. Yano, “On Hardy and Littlewood's theorem”, Proc. Japan. Acad., 33:2 (1957), 73–74 | DOI | MR | Zbl
[7] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo “Mir”, Moskva, 1965 | MR
[8] G. H. Hardy, J. E. Littlewood, “Solution of the Cesaro summability problem for powerseries and Fourier series”, Math. Z., 19 (1924), 67–96 | DOI | MR
[9] G. H. Hardy, J. E. Littlewood, “Abel's theorem and its converse”, Proc. London Math. Soc., 18 (1919), 205–235 | DOI | Zbl
[10] A. Zygmund, “An example in Fourier series”, Studia Math., 10 (1948), 113–119 | MR | Zbl
[11] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960
[12] S. Spanne, “Some function spaces defined using the mean oscillation over cubes”, Ann. Scuola norm. super. Pisa, 19:4 (1965), 593–608 | MR | Zbl
[13] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure and Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl
[14] V. A. Andrienko, Vlozhenie nekotorykh klasov funktsii, Izv. AN SSSR, seriya matem., 31, 1967 | MR | Zbl
[15] N. Temirgaliev, “O svyazi teorem vlozheniya s ravnomernoi skhodimostyu kratnykh ryadov Fure”, Matem. zametki, 12:2 (1972), 139–148 | MR | Zbl
[16] V. I. Kolyada, “O vlozhenii v klassy nepreryvnykh funktsii mnogikh peremennykh”, Matem. sb., 99(141) (1976), 421–432