On deformations of closed surfaces of genus $p\geqslant1$ with given infinitesimal change of metric
Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 283-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article the author studies deformations with given infinitesimal change of metric of a closed surface of genus $p\geqslant1$ of positive extrinsic curvature, situated in a three-dimensional Riemannian space. It is established that, in contrast to the case $p=0$ (investigated by H. Weyl and A. V. Pogorelov), the surface does not admit deformations with an arbitrary preassigned infinitesimal change of metric. Conditions are obtained on the given change of metric that are necessary and sufficient for the existence of a deformation. As an auxiliary result necessary and sufficient conditions are established for the existence on a closed Riemann surface of a regular global solution of a nonhomogeneous elliptic system of Carleman type. Bibliography: 13 titles.
@article{SM_1980_36_3_a0,
     author = {S. B. Klimentov},
     title = {On deformations of closed surfaces of genus $p\geqslant1$ with given infinitesimal change of metric},
     journal = {Sbornik. Mathematics},
     pages = {283--299},
     year = {1980},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_3_a0/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - On deformations of closed surfaces of genus $p\geqslant1$ with given infinitesimal change of metric
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 283
EP  - 299
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_3_a0/
LA  - en
ID  - SM_1980_36_3_a0
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T On deformations of closed surfaces of genus $p\geqslant1$ with given infinitesimal change of metric
%J Sbornik. Mathematics
%D 1980
%P 283-299
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_36_3_a0/
%G en
%F SM_1980_36_3_a0
S. B. Klimentov. On deformations of closed surfaces of genus $p\geqslant1$ with given infinitesimal change of metric. Sbornik. Mathematics, Tome 36 (1980) no. 3, pp. 283-299. http://geodesic.mathdoc.fr/item/SM_1980_36_3_a0/

[1] G. Veil, “Ob opredelenii zamknutoi vypukloi poverkhnosti ee lineinym elementom”, Uspekhi matem. nauk, III:2(24) (1948), 159–190 | MR

[2] A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnostei, izd-vo “Nauka”, Moskva, 1969 | MR

[3] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, Moskva, 1959 | MR

[4] Dzh. Springer, Vvedenie v teoriyu rimakovykh poverkhnostei, Moskva, IL, 1960

[5] E. I. Zverovich, “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovykh klassakh na rimanovykh poverkhnostyakh”, Uspekhi matem. nauk, XXVI:1(157) (1971), 113–179

[6] V. T. Fomenko, “O zhestkosti i odnoznachnoi opredelennosti zamknutykh poverkhnostei roda $p\ge 1$ v rimanovom prostranstve”, DAN SSSR, 213:1 (1973), 45–48 | MR | Zbl

[7] O. L. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo “Nauka”, Moskva, 1973 | MR

[8] R. Nevanlinna, Uniformizatsiya, IL, Moskva, 1955

[9] Yu. L. Rodin, “Integraly tipa Koshi i kraevye zadachi dlya obobschennykh analiticheskikh funktsii na zamknutykh rimanovykh poverkhnostyakh”, DAN SSSR, 142:4 (1962), 798–801 | MR | Zbl

[10] Yu. L. Rodin, Sistemy differentsialnykh uravnenii pervogo poryadka na zamknutykh rimanovykh poverkhnostyakh, Doktorskaya dissertatsiya, Tbilisi, 1965

[11] V. T. Fomenko, S. B. Klimentov, “Neizgibaemost zamknutykh poverkhnostei roda $p\ge 1$ i polozhitelnoi vneshnei krivizny”, Matem. sb., 101(143) (1976), 402–415 | MR | Zbl

[12] S. B. Klimentov, “Izgibaniya poverkhnostei roda $p\ge 0$ polozhitelnoi vneshnei krivizny”, Ukr. geom. sb., 19, Kharkov, 1976, 37–56 | MR | Zbl

[13] Yu. L. Rodin, “Algebraicheskaya teoriya obobschennykh analiticheskikh funktsii na zamknutykh rimanovykh poverkhnostyakh”, DAN SSSR, 142:5 (1962), 1030–1033 | MR | Zbl