Asymptotics of diagonal Padé approximants of the functions $\sin z$, $\cos z$,
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 231-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies properties of diagonal Padé approximants of the functions $\sin z$, $\cos z$, $\operatorname{sinh}z$ and $\operatorname{cosh}z$. It investigates asymptotic equations, at each $z\in\mathbf C$, for the difference between a given function and the corresponding diagonal Padé approximants. Bibliography: 15 titles.
@article{SM_1980_36_2_a6,
     author = {V. K. Dzyadyk},
     title = {Asymptotics of diagonal {Pad\'e} approximants of the functions $\sin z$, $\cos z$,},
     journal = {Sbornik. Mathematics},
     pages = {231--249},
     year = {1980},
     volume = {36},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a6/}
}
TY  - JOUR
AU  - V. K. Dzyadyk
TI  - Asymptotics of diagonal Padé approximants of the functions $\sin z$, $\cos z$,
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 231
EP  - 249
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a6/
LA  - en
ID  - SM_1980_36_2_a6
ER  - 
%0 Journal Article
%A V. K. Dzyadyk
%T Asymptotics of diagonal Padé approximants of the functions $\sin z$, $\cos z$,
%J Sbornik. Mathematics
%D 1980
%P 231-249
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1980_36_2_a6/
%G en
%F SM_1980_36_2_a6
V. K. Dzyadyk. Asymptotics of diagonal Padé approximants of the functions $\sin z$, $\cos z$,. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 231-249. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a6/

[1] V. K. Dzyadyk, L. I. Filozof, “O skorosti skhodimosti approksimatsii Pade dlya nekotorykh elementarnykh funktsii”, Matem. sb., 107(149) (1978), 347–363 | MR | Zbl

[2] V. K. Dzyadyk, “O primenenii lineinykh metodov k priblizheniyu polinomami reshenii obyknovennykh differentsialnykh uravnenii i integralnykh uravnenii Gammershteina”, Izv. AN SSSR, seriya matem., 34 (1970), 827–848 | Zbl

[3] V. K. Dzyadyk, “Ob effektivnom postroenii mnogochlenov, kotorye osuschestvlyayut blizkoe k nailuchshemu priblizhenie funktsii $e^x$, $\sin x$ i dr.”, Ukr. matem. zh., 25:4 (1973), 435–453 | MR

[4] V. K. Dzyadyk, “Approksimatsionnyi metod priblizheniya algebraicheskimi mnogochlenami reshenii lineinykh differentsialnykh uravnenii”, Izv. AN SSSR, seriya matem., 38 (1974), 937–967 | Zbl

[5] A. N. Khovanskii, Prilozhenie tsepnykh drobei i ikh obobschenii k voprosam priblizhennogo analiza, Gostekhizdat, Moskva, 1956

[6] O. Perron, Die Lehre von den Kettenbrüchen, Chell. publ. Comp., New York, 1954 | MR

[7] R. J. Arms and A. Edrei, “The Pade tables and continued fractions generated by totally positive sequences”, Mathematical Essays dedicated to A. J. Macintyre, Athens., Ohio Univ. Press, 1970, 1–21 | MR

[8] A. Edrei, “Convergence of the complete Pade tables of trigonometric functions”, J. Appr. Theory, 15:4 (1975), 278–293 | DOI | MR | Zbl

[9] A. Edrei, “The complete Padé tables of certain series of simple fractions”, Rocke Mountain J. Math.

[10] M. Aissen, A. Edrei, I. J. Schoenberg and Anne Whitney, “On the generating functions of totally positive sequences”, Proc. Nat. Acad. Sci USA, 37 (1951), 303–307 | DOI | MR | Zbl

[11] A. Edrei, “Proof of a conjeture of Schoenberg on the generating functions of a totally positive sequence”, Canad. J. Math., 5 (1953), 86–94 | MR | Zbl

[12] I. J. Schoenberg, “On smoothing operations and their generating functions”, Bull. Amer. Math. Soc., 59 (1953), 199–230 | DOI | MR | Zbl

[13] H. I. Akhiezer, Lektsii po teorii approksimatsii, izd-vo “Nauka”, Moskva, 1965 | MR

[14] S. Ya. Alper, “Ob asimptoticheskikh znacheniyakh nailuchshego priblizheniya analiticheskikh funktsii v kompleksnoi oblasti”, Uspekhi matem. nauk, XIV:1(85) (1959), 131–134 | MR | Zbl

[15] I. L. Luke, The special functions and their approximations, v. 53, II, Academie Press, New York–London, 1969 | Zbl