On the summability method of Abel–Poisson type for multiple Fourier integrals
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 213-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author examines a class of summability methods for multiple Fourier integrals which contains for certain values of the parameter the Abel–Poisson and Gauss–Weierstrass methods. The properties of the kernels of these methods are studied. A subclass of positive kernels is exhibited. Using the properties established for the kernels, he proves the convergence of the integral means under consideration almost everywhere and in the metric of $L_p$, as well as the existence of a localization principle. Bibliography: 18 titles.
@article{SM_1980_36_2_a5,
     author = {B. I. Golubov},
     title = {On the summability method of {Abel{\textendash}Poisson} type for multiple {Fourier} integrals},
     journal = {Sbornik. Mathematics},
     pages = {213--229},
     year = {1980},
     volume = {36},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On the summability method of Abel–Poisson type for multiple Fourier integrals
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 213
EP  - 229
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/
LA  - en
ID  - SM_1980_36_2_a5
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On the summability method of Abel–Poisson type for multiple Fourier integrals
%J Sbornik. Mathematics
%D 1980
%P 213-229
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/
%G en
%F SM_1980_36_2_a5
B. I. Golubov. On the summability method of Abel–Poisson type for multiple Fourier integrals. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 213-229. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/

[1] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, izd-vo “Mir”, Moskva, 1974

[2] S. Bokhner, Lektsii ob integralakh Fure, Fizmatgiz, Moskva, 1962

[3] N. I. Akhiezer, Klassicheskaya problema momentov, Fizmatgiz, Moskva, 1961

[4] A. Zigmund, Trigonometricheskie ryady, izd-vo “Mir”, Moskva, 1965 | MR

[5] M. T. Cheng, “The Gibbs phenomenon and Bochners summation methods. II”, Duke Math. J., 17:4 (1950), 477–490 | DOI | MR | Zbl

[6] F. Ustina, “Gibbs phenomenon for functions of two variables”, Trans. Amer. Math. Soc., 129:1 (1967), 124–129 | DOI | MR | Zbl

[7] B. I. Golubov, “On the Gibbs phenomenon for the Riesz spherical means of multiple Fourier series and integrals”, Analysis Math., 1:1 (1975), 31–53 | DOI | MR | Zbl

[8] G. X. Khardi, V. V. Rogozinskii, Ryady Fure, Fizmatgiz, Moskva, 1959

[9] M. L. Cartright, “On the relation between the different types of Abel summation”, Proc. London Math. Soc., 31:2 (1930), 81–96 | DOI

[10] G. Khardi, Raskhodyaschiesya ryady, IL, Moskva, 1951

[11] S. Bochner, “Theta relations with spherical harmonics”, Proc. Nat. Acad. Sci. USA, 37 (1951), 804–808 | DOI | MR | Zbl

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, II, Fizmatgiz, Moskva, 1974

[13] B. Kuttner, “On the Gibbs phenomenon for Riesz means”, J. London Math. Soc., 19:3 (1944), 153–161 | MR | Zbl

[14] B. Kuttner, “On positiv Riesz and Abel typical means”, Proc. London Math. Soc. ser. 2, 49:5 (1947), 328–352 | DOI | MR | Zbl

[15] G. Polya, “On the zeros of an integral function represented by Fourier integral”, Messenger Math., 52:12 (1923), 185–188 | Zbl

[16] B. Kuttner, “On the Riesz means of a Fourier series”, J. London Math. Soc., 19:2 (1944), 77–84 | MR | Zbl

[17] P. L. Butzer, R. J. Nessel, Fourier analysis and approximation, v. 1, New York and London, Academic Press, 1971 | MR

[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, Moskva, 1962