On the summability method of Abel--Poisson type for multiple Fourier integrals
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 213-229

Voir la notice de l'article provenant de la source Math-Net.Ru

The author examines a class of summability methods for multiple Fourier integrals which contains for certain values of the parameter the Abel–Poisson and Gauss–Weierstrass methods. The properties of the kernels of these methods are studied. A subclass of positive kernels is exhibited. Using the properties established for the kernels, he proves the convergence of the integral means under consideration almost everywhere and in the metric of $L_p$, as well as the existence of a localization principle. Bibliography: 18 titles.
@article{SM_1980_36_2_a5,
     author = {B. I. Golubov},
     title = {On the summability method of {Abel--Poisson} type for multiple {Fourier} integrals},
     journal = {Sbornik. Mathematics},
     pages = {213--229},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On the summability method of Abel--Poisson type for multiple Fourier integrals
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 213
EP  - 229
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/
LA  - en
ID  - SM_1980_36_2_a5
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On the summability method of Abel--Poisson type for multiple Fourier integrals
%J Sbornik. Mathematics
%D 1980
%P 213-229
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/
%G en
%F SM_1980_36_2_a5
B. I. Golubov. On the summability method of Abel--Poisson type for multiple Fourier integrals. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 213-229. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a5/