Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0$
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 203-212

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper estimates are found for $L_pR_n(f)$ – the least deviation in the $L_p$-metric, $0$, of a piecewise analytic function $f$ from the rational functions of degree at most $n$. It is shown that these estimates are sharp in a well-defined sense. Bibliography: 13 titles.
@article{SM_1980_36_2_a4,
     author = {N. S. Vyacheslavov},
     title = {Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0<p\leqslant\infty$},
     journal = {Sbornik. Mathematics},
     pages = {203--212},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a4/}
}
TY  - JOUR
AU  - N. S. Vyacheslavov
TI  - Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 203
EP  - 212
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a4/
LA  - en
ID  - SM_1980_36_2_a4
ER  - 
%0 Journal Article
%A N. S. Vyacheslavov
%T Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0
%J Sbornik. Mathematics
%D 1980
%P 203-212
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_2_a4/
%G en
%F SM_1980_36_2_a4
N. S. Vyacheslavov. Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0