Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 203-212
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper estimates are found for $L_pR_n(f)$ – the least deviation in the $L_p$-metric, $0$, of a piecewise analytic function $f$ from the rational functions of degree at most $n$. It is shown that these estimates are sharp in a well-defined sense.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1980_36_2_a4,
     author = {N. S. Vyacheslavov},
     title = {Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0<p\leqslant\infty$},
     journal = {Sbornik. Mathematics},
     pages = {203--212},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a4/}
}
                      
                      
                    TY - JOUR AU - N. S. Vyacheslavov TI - Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0 JO - Sbornik. Mathematics PY - 1980 SP - 203 EP - 212 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a4/ LA - en ID - SM_1980_36_2_a4 ER -
N. S. Vyacheslavov. Rate of approximation of piecewise-analytic functions by rational fractions in the $L_p$-metrics, $0
