Crossed group rings of finite groups and rings of $p$-adic integers with finitely many indecomposable integral representations
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 173-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a finite extension of the field $Q_p$ of rational $p$-adic numbers, $R$ the ring of all integral elements of $F$, $ R^*$ the multiplicative group of $R$, $G$ a finite group, and $\Lambda=(G,R,\lambda)$ the crossed group ring of $G$ and $R$ with the factor system $\{\lambda_{a,b}\}$ ($\lambda_{a,b}\in R^*$; $a,b\in G$). A classification is given of the rings $\Lambda$ for which the number of indecomposable $R$-representations is finite. When $\Lambda$ is a group ring, this problem was solved in papers by Faddeev, Borevich, Gudivok, Yakobinskii, and others. Bibliography: 22 titles.
@article{SM_1980_36_2_a2,
     author = {L. F. Barannik and P. M. Gudivok},
     title = {Crossed group rings of finite groups and rings of $p$-adic integers with finitely many indecomposable integral representations},
     journal = {Sbornik. Mathematics},
     pages = {173--194},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a2/}
}
TY  - JOUR
AU  - L. F. Barannik
AU  - P. M. Gudivok
TI  - Crossed group rings of finite groups and rings of $p$-adic integers with finitely many indecomposable integral representations
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 173
EP  - 194
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a2/
LA  - en
ID  - SM_1980_36_2_a2
ER  - 
%0 Journal Article
%A L. F. Barannik
%A P. M. Gudivok
%T Crossed group rings of finite groups and rings of $p$-adic integers with finitely many indecomposable integral representations
%J Sbornik. Mathematics
%D 1980
%P 173-194
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_2_a2/
%G en
%F SM_1980_36_2_a2
L. F. Barannik; P. M. Gudivok. Crossed group rings of finite groups and rings of $p$-adic integers with finitely many indecomposable integral representations. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a2/