Imbedding of algebras in algebras of triangular matrices
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 155-172
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved in the paper that an algebra $R$ which satisfies identities of the form
\begin{gather*}
[x,y][z,t][x_1,\dots,x_k]=0,\qquad[[x,y],z][x_1,\dots,x_k]=0,\\
[x_1,y_1]\cdot\dotso\cdot[x_l,y_l]=0,
\end{gather*}
is imbeddable in the algebra $T_n(K)$ of triangular matrices over a commutative algebra $K$. This permits us to answer both the question due to L. Small concerning the imbeddability of an arbitrary nilpotent algebra in a matrix algebra over a commutative algebra and the question of D. Passman on the imbeddability of a group algebra which satisfies a nontrivial identity in a matrix algebra over a commutative algebra.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1980_36_2_a1,
     author = {A. Z. Anan'in},
     title = {Imbedding of algebras in algebras of triangular matrices},
     journal = {Sbornik. Mathematics},
     pages = {155--172},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a1/}
}
                      
                      
                    A. Z. Anan'in. Imbedding of algebras in algebras of triangular matrices. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 155-172. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a1/
