Imbedding of algebras in algebras of triangular matrices
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 155-172

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in the paper that an algebra $R$ which satisfies identities of the form \begin{gather*} [x,y][z,t][x_1,\dots,x_k]=0,\qquad[[x,y],z][x_1,\dots,x_k]=0,\\ [x_1,y_1]\cdot\dotso\cdot[x_l,y_l]=0, \end{gather*} is imbeddable in the algebra $T_n(K)$ of triangular matrices over a commutative algebra $K$. This permits us to answer both the question due to L. Small concerning the imbeddability of an arbitrary nilpotent algebra in a matrix algebra over a commutative algebra and the question of D. Passman on the imbeddability of a group algebra which satisfies a nontrivial identity in a matrix algebra over a commutative algebra. Bibliography: 6 titles.
@article{SM_1980_36_2_a1,
     author = {A. Z. Anan'in},
     title = {Imbedding of algebras in algebras of triangular matrices},
     journal = {Sbornik. Mathematics},
     pages = {155--172},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a1/}
}
TY  - JOUR
AU  - A. Z. Anan'in
TI  - Imbedding of algebras in algebras of triangular matrices
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 155
EP  - 172
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a1/
LA  - en
ID  - SM_1980_36_2_a1
ER  - 
%0 Journal Article
%A A. Z. Anan'in
%T Imbedding of algebras in algebras of triangular matrices
%J Sbornik. Mathematics
%D 1980
%P 155-172
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_2_a1/
%G en
%F SM_1980_36_2_a1
A. Z. Anan'in. Imbedding of algebras in algebras of triangular matrices. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 155-172. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a1/