Completely integrable Hamiltonian systems on a~group of triangular matrices
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there is constructed a family of Hamiltonians on the dual space to a Lie algebra of triangular matrices for which the Euler equations are completely integrable in the sense of Liouville on orbits in general position. Bibliography: 4 titles.
@article{SM_1980_36_1_a8,
     author = {A. A. Arkhangel'skii},
     title = {Completely integrable {Hamiltonian} systems on a~group of triangular matrices},
     journal = {Sbornik. Mathematics},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/}
}
TY  - JOUR
AU  - A. A. Arkhangel'skii
TI  - Completely integrable Hamiltonian systems on a~group of triangular matrices
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 127
EP  - 134
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/
LA  - en
ID  - SM_1980_36_1_a8
ER  - 
%0 Journal Article
%A A. A. Arkhangel'skii
%T Completely integrable Hamiltonian systems on a~group of triangular matrices
%J Sbornik. Mathematics
%D 1980
%P 127-134
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/
%G en
%F SM_1980_36_1_a8
A. A. Arkhangel'skii. Completely integrable Hamiltonian systems on a~group of triangular matrices. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/