Completely integrable Hamiltonian systems on a group of triangular matrices
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper there is constructed a family of Hamiltonians on the dual space to a Lie algebra of triangular matrices for which the Euler equations are completely integrable in the sense of Liouville on orbits in general position. Bibliography: 4 titles.
@article{SM_1980_36_1_a8,
author = {A. A. Arkhangel'skii},
title = {Completely integrable {Hamiltonian} systems on a~group of triangular matrices},
journal = {Sbornik. Mathematics},
pages = {127--134},
year = {1980},
volume = {36},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/}
}
A. A. Arkhangel'skii. Completely integrable Hamiltonian systems on a group of triangular matrices. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/
[1] A. Weinstein, J. Marsden, “Reduction of symplectic manifold with symmetry”, Reports of Math. Phil., 5:1 (1974), 121–130 | DOI | MR | Zbl
[2] A. S. Mischenko, A. T. Fomenko, “Ob integrirovanii uravnenii Eilera na poluprostykh algebrakh Li”, DAN SSSR, 231:3 (1976), 536–538 | MR | Zbl
[3] A. S. Mischenko, A. T. Fomenko, “Obobschennyi metod Liuvillya integrirovaniya dinamicheskikh sistem”, Funk. analiz, 12:2 (1978), 46–56 | MR | Zbl
[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, izd-vo “Nauka”, Moskva, 1974 | MR