Completely integrable Hamiltonian systems on a group of triangular matrices
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper there is constructed a family of Hamiltonians on the dual space to a Lie algebra of triangular matrices for which the Euler equations are completely integrable in the sense of Liouville on orbits in general position. Bibliography: 4 titles.
@article{SM_1980_36_1_a8,
     author = {A. A. Arkhangel'skii},
     title = {Completely integrable {Hamiltonian} systems on a~group of triangular matrices},
     journal = {Sbornik. Mathematics},
     pages = {127--134},
     year = {1980},
     volume = {36},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/}
}
TY  - JOUR
AU  - A. A. Arkhangel'skii
TI  - Completely integrable Hamiltonian systems on a group of triangular matrices
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 127
EP  - 134
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/
LA  - en
ID  - SM_1980_36_1_a8
ER  - 
%0 Journal Article
%A A. A. Arkhangel'skii
%T Completely integrable Hamiltonian systems on a group of triangular matrices
%J Sbornik. Mathematics
%D 1980
%P 127-134
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/
%G en
%F SM_1980_36_1_a8
A. A. Arkhangel'skii. Completely integrable Hamiltonian systems on a group of triangular matrices. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/

[1] A. Weinstein, J. Marsden, “Reduction of symplectic manifold with symmetry”, Reports of Math. Phil., 5:1 (1974), 121–130 | DOI | MR | Zbl

[2] A. S. Mischenko, A. T. Fomenko, “Ob integrirovanii uravnenii Eilera na poluprostykh algebrakh Li”, DAN SSSR, 231:3 (1976), 536–538 | MR | Zbl

[3] A. S. Mischenko, A. T. Fomenko, “Obobschennyi metod Liuvillya integrirovaniya dinamicheskikh sistem”, Funk. analiz, 12:2 (1978), 46–56 | MR | Zbl

[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, izd-vo “Nauka”, Moskva, 1974 | MR