Completely integrable Hamiltonian systems on a~group of triangular matrices
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper there is constructed a family of Hamiltonians on the dual space to a Lie algebra of triangular matrices for which the Euler equations are completely integrable in the sense of Liouville on orbits in general position.
Bibliography: 4 titles.
@article{SM_1980_36_1_a8,
author = {A. A. Arkhangel'skii},
title = {Completely integrable {Hamiltonian} systems on a~group of triangular matrices},
journal = {Sbornik. Mathematics},
pages = {127--134},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/}
}
A. A. Arkhangel'skii. Completely integrable Hamiltonian systems on a~group of triangular matrices. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a8/