Subharmonic functions and analytic structure in the maximal ideal space of a uniform algebra
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 111-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we present a method of introducing a one-dimensional analytic structure into the maximal ideal space of a uniform algebra, based on the use of subharmonic functions. Let $A$ be a uniform algebra on a compact Hausdorff space $X$, $M_A$ the maximal ideal space of $A$, $\widehat g$ the Gel'fand transform of a function $g\in A$, $\widehat A=\{\widehat g\mid g\in A\}$, and $p$ a continuous function on $M_A$ which “locally belongs” to the algebra $\widehat A$. In § 1, we introduce certain functions which estimate the “dimensions” of the images of the fibers $p^{-1}(t)$, $t\in p(M_A)$, under mappings $\widehat g$, and prove that these functions are subharmonic. The results obtained on subharmonicity are used to prove the principal theorems of the paper, on finiteness of the fibers and analytic structure (Theorems 1–4). In § 2, these theorems are applied to the study of the maximality properties of algebras of analytic functions on compact subsets of the Riemann sphere. Bibliography: 20 titles.
@article{SM_1980_36_1_a7,
     author = {V. N. Senichkin},
     title = {Subharmonic functions and analytic structure in the maximal ideal space of a~uniform algebra},
     journal = {Sbornik. Mathematics},
     pages = {111--126},
     year = {1980},
     volume = {36},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a7/}
}
TY  - JOUR
AU  - V. N. Senichkin
TI  - Subharmonic functions and analytic structure in the maximal ideal space of a uniform algebra
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 111
EP  - 126
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_1_a7/
LA  - en
ID  - SM_1980_36_1_a7
ER  - 
%0 Journal Article
%A V. N. Senichkin
%T Subharmonic functions and analytic structure in the maximal ideal space of a uniform algebra
%J Sbornik. Mathematics
%D 1980
%P 111-126
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_36_1_a7/
%G en
%F SM_1980_36_1_a7
V. N. Senichkin. Subharmonic functions and analytic structure in the maximal ideal space of a uniform algebra. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a7/

[1] E. Bishop, “Subalgebras of functions on a Riemann surface”, Pacific J. Math., 8 (1958), 29–50 | MR | Zbl

[2] E. Bishop, “Analyticity in certain Banach algebras”, Trans. Amer. Math. Soc., 102 (1962), 507–544 | DOI | MR | Zbl

[3] E. Bishop, “Holomorphic completions, analytic continuations and the interpolation of seminorms”, Ann. Math., 78 (1963), 468–500 | DOI | MR | Zbl

[4] J. Wermer, “Function rings and Riemann surface”, Ann. Math., 67 (1958), 45–71 | DOI | MR | Zbl

[5] J. Wermer, “Rings of analytic functions”, Ann. Math., 67 (1958), 497–516 | DOI | MR | Zbl

[6] J. Wermer, “The hull of a curve in $\mathbf C^n$”, Ann. Math., 68 (1958), 550–561 | DOI | MR | Zbl

[7] G. Stolzenberg, “Uniform approximation on smooth curves”, Acta Math., 115 (1966), 195–198 | DOI | MR

[8] H. Alexander, “Uniform algebras on curves”, Bull. Amer. Math. Soc., 75 (1969), 1269–1272 | DOI | MR | Zbl

[9] H. Alexander, “Polynomial approximation and hulls in sets of finite linear mesure in $\mathbf C^n$”, Amer. J. Math., 93 (1971), 65–74 | DOI | MR | Zbl

[10] H. Alexander, “Polynomial approximation and analytic structure”, Duke J. Math., 38 (1971), 123–135 | DOI | MR | Zbl

[11] J.-E. Björk, “Relatively maximal function algebras generated by polynomials on compact sets in the complex plane”, Arkiv Mat., 8 (1969), 17–23 | DOI | MR | Zbl

[12] J.-E. Björk, “Analytic structure in the maximal ideal space of a uniform algebra”, Arkiv Mat., 8 (1971), 239–244 | DOI | MR | Zbl

[13] T. Gamelin, “Polynomial approximation on the thin sets”, Lecture Notes in Math., No 184, Utah, Park City, 1970, 50–78, Symposium on Several Complex Variables | MR

[14] V. N. Senichkin, “O maksimalnosti algebry funktsii, nepreryvnykh na rasshirennoi kompleksnoi ploskosti i analiticheskikh v dopolnenii k vpolne razryvnomu kompaktu”, Zapiski nauchnykh seminarov LOMI, 22, Issledovaniya po lineinym operatoram i teorii funktsii. II, 1971, 130–138 | Zbl

[15] V. N. Senichkin, “Algebra nepreryvnykh na sfere analiticheskikh funktsii s sovershennym mnozhestvom osobennostei i polinomialnaya approksimatsiya na tolstykh kompaktakh v $\mathbf C^n$”, Zapiski nauchnykh seminarov LOMI, 30, Issledovaniya po lineinym operatoram i teorii funktsii. III, 1972, 172–173 | Zbl

[16] T. Gamelin, Ravnomernye algebry, izd-vo “Mir”, Moskva, 1973

[17] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, izd-vo “Nauka”, Moskva, 1966 | MR

[18] M. Brelo, Osnovy klassicheskoi teorii potentsiala, izd-vo “Mir”, Moskva, 1964 | MR

[19] A. M. Davie, “An example on rational approximation”, Bull. London. Math. Soc., 2 (1970), 83–86 | DOI | MR | Zbl

[20] A. G. Vitushkin, “Analiticheskaya emkost v zadachakh teorii priblizhenii”, Uspekhi matem. nauk, XXII:6(138) (1967), 141–199