On exact Weyl multipliers
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 101-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a complete orthonormal system which has no exact Weyl multiplier is proved. It is shown that by rearrangements of the orthonormal system of D. E. Men'shov one can realize all exact Weyl multipliers, while the class of convex sequences is not large enough to contain all Weyl multipliers. Bibliography: 8 titles.
@article{SM_1980_36_1_a6,
     author = {S. N. Poleshchuk},
     title = {On exact {Weyl} multipliers},
     journal = {Sbornik. Mathematics},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a6/}
}
TY  - JOUR
AU  - S. N. Poleshchuk
TI  - On exact Weyl multipliers
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 101
EP  - 110
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_1_a6/
LA  - en
ID  - SM_1980_36_1_a6
ER  - 
%0 Journal Article
%A S. N. Poleshchuk
%T On exact Weyl multipliers
%J Sbornik. Mathematics
%D 1980
%P 101-110
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_1_a6/
%G en
%F SM_1980_36_1_a6
S. N. Poleshchuk. On exact Weyl multipliers. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a6/