Tauberian theorems for generalized functions with supports in cones
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 75-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article the authors prove several multidimensional theorems of Tauberian type, connecting the behavior at infinity of generalized functions with support in a cone with the behavior of their Fourier–Laplace transforms in a neighborhood of zero. As corollaries they deduce a strengthened version of V. S. Vladimirov's Tauberian theorem and an analog of the theorem of Lindelöf for the edge of a tube domain over a cone. Bibliography: 5 titles.
@article{SM_1980_36_1_a4,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Tauberian theorems for generalized functions with supports in~cones},
     journal = {Sbornik. Mathematics},
     pages = {75--86},
     year = {1980},
     volume = {36},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Tauberian theorems for generalized functions with supports in cones
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 75
EP  - 86
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/
LA  - en
ID  - SM_1980_36_1_a4
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Tauberian theorems for generalized functions with supports in cones
%J Sbornik. Mathematics
%D 1980
%P 75-86
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/
%G en
%F SM_1980_36_1_a4
Yu. N. Drozhzhinov; B. I. Zavialov. Tauberian theorems for generalized functions with supports in cones. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/

[1] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, izd-vo “Nauka”, Moskva, 1976 | MR

[2] Yu. N. Drozhzhinov, B. I. Zavyalov, “Kvaziasimptotika obobschennykh funktsii i tauberovy teoremy v kompleksnoi oblasti”, Matem. sb., 102(144) (1977), 372–390 | Zbl

[3] V. S. Vladimirov, “Mnogomernoe obobschenie tauberovoi teoremy Khardi i Littlvuda”, Izv. AN SSSR, seriya matem., 40 (1976), 1084–1101 | MR | Zbl

[4] E. M. Chirka, “Teoremy Lindelefa i Fatu v $\mathbf C^n$”, Matem. sb., 92 (134) (1973), 622–644 | Zbl

[5] S. Lojasiewicz, “Sur la valeur et limite d'une distribution dans une point”, Studia Math., 16:1 (1957), 1–36 | MR | Zbl