Tauberian theorems for generalized functions with supports in~cones
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 75-86
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this article the authors prove several multidimensional theorems of Tauberian type, connecting the behavior at infinity of generalized functions with support in a cone with the behavior of their Fourier–Laplace transforms in a neighborhood of zero. As corollaries they deduce a strengthened version of V. S. Vladimirov's Tauberian theorem and an analog of the theorem of Lindelöf for the edge of a tube domain over a cone.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1980_36_1_a4,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Tauberian theorems for generalized functions with supports in~cones},
     journal = {Sbornik. Mathematics},
     pages = {75--86},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/}
}
                      
                      
                    Yu. N. Drozhzhinov; B. I. Zavialov. Tauberian theorems for generalized functions with supports in~cones. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/
