Tauberian theorems for generalized functions with supports in cones
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 75-86
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article the authors prove several multidimensional theorems of Tauberian type, connecting the behavior at infinity of generalized functions with support in a cone with the behavior of their Fourier–Laplace transforms in a neighborhood of zero. As corollaries they deduce a strengthened version of V. S. Vladimirov's Tauberian theorem and an analog of the theorem of Lindelöf for the edge of a tube domain over a cone. Bibliography: 5 titles.
@article{SM_1980_36_1_a4,
author = {Yu. N. Drozhzhinov and B. I. Zavialov},
title = {Tauberian theorems for generalized functions with supports in~cones},
journal = {Sbornik. Mathematics},
pages = {75--86},
year = {1980},
volume = {36},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/}
}
Yu. N. Drozhzhinov; B. I. Zavialov. Tauberian theorems for generalized functions with supports in cones. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a4/
[1] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, izd-vo “Nauka”, Moskva, 1976 | MR
[2] Yu. N. Drozhzhinov, B. I. Zavyalov, “Kvaziasimptotika obobschennykh funktsii i tauberovy teoremy v kompleksnoi oblasti”, Matem. sb., 102(144) (1977), 372–390 | Zbl
[3] V. S. Vladimirov, “Mnogomernoe obobschenie tauberovoi teoremy Khardi i Littlvuda”, Izv. AN SSSR, seriya matem., 40 (1976), 1084–1101 | MR | Zbl
[4] E. M. Chirka, “Teoremy Lindelefa i Fatu v $\mathbf C^n$”, Matem. sb., 92 (134) (1973), 622–644 | Zbl
[5] S. Lojasiewicz, “Sur la valeur et limite d'une distribution dans une point”, Studia Math., 16:1 (1957), 1–36 | MR | Zbl