On boundary values in $L_p$, $p>1$, of solutions of elliptic equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 1-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The behavior near the boundary of generalized solutions of a second order elliptic equation
$$
\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\frac{\partial u}{\partial x_j}\biggr)=f,\qquad x\in Q=\{|x|1\}\subset\mathbf R_n.
$$
in $W_p^1(Q)$, $p>1$, is studied. 
It is shown that under a certain condition on the right side of the equation, the boundedness of the function $\|x\|_{L_p(\|x\|=r)}$, $\frac12\leqslant r1$, is necessary and sufficient for the existence of a limit for the solution $u(rw)$, $\frac12\leqslant r1$, $|w|=1$, in $L_p(\|w\|=1)$ as $r\to1-0$. Moreover, the summability of the function
$(1-|x|)|u(x)|^{p-2}|\nabla u(x)|^2$ is also a necessary and sufficient condition for the existence of a limit in $ L_p$ on the boundary.
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_1980_36_1_a0,
     author = {A. K. Gushchin and V. P. Mikhailov},
     title = {On boundary values in $L_p$, $p>1$, of solutions of elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a0/}
}
                      
                      
                    A. K. Gushchin; V. P. Mikhailov. On boundary values in $L_p$, $p>1$, of solutions of elliptic equations. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a0/
