On boundary values in $L_p$, $p>1$, of solutions of elliptic equations
Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 1-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior near the boundary of generalized solutions of a second order elliptic equation $$ \sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\frac{\partial u}{\partial x_j}\biggr)=f,\qquad x\in Q=\{|x|<1\}\subset\mathbf R_n. $$ in $W_p^1(Q)$, $p>1$, is studied. It is shown that under a certain condition on the right side of the equation, the boundedness of the function $\|x\|_{L_p(\|x\|=r)}$, $\frac12\leqslant r<1$, is necessary and sufficient for the existence of a limit for the solution $u(rw)$, $\frac12\leqslant r<1$, $|w|=1$, in $L_p(\|w\|=1)$ as $r\to1-0$. Moreover, the summability of the function $(1-|x|)|u(x)|^{p-2}|\nabla u(x)|^2$ is also a necessary and sufficient condition for the existence of a limit in $ L_p$ on the boundary. Bibliography: 10 titles.
@article{SM_1980_36_1_a0,
     author = {A. K. Gushchin and V. P. Mikhailov},
     title = {On boundary values in $L_p$, $p>1$, of solutions of elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {1--19},
     year = {1980},
     volume = {36},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_1_a0/}
}
TY  - JOUR
AU  - A. K. Gushchin
AU  - V. P. Mikhailov
TI  - On boundary values in $L_p$, $p>1$, of solutions of elliptic equations
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 1
EP  - 19
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_1_a0/
LA  - en
ID  - SM_1980_36_1_a0
ER  - 
%0 Journal Article
%A A. K. Gushchin
%A V. P. Mikhailov
%T On boundary values in $L_p$, $p>1$, of solutions of elliptic equations
%J Sbornik. Mathematics
%D 1980
%P 1-19
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1980_36_1_a0/
%G en
%F SM_1980_36_1_a0
A. K. Gushchin; V. P. Mikhailov. On boundary values in $L_p$, $p>1$, of solutions of elliptic equations. Sbornik. Mathematics, Tome 36 (1980) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/SM_1980_36_1_a0/

[1] F. Riesz, “Über die Randwerte einer analytischen Function”, Math. Z., 18 (1923), 87–95 | DOI | MR | Zbl

[2] J. Littlewood, R. Paley, “Theorems on Fourier series and power series. I”, J. London Math. Soc., 6 (1931), 230–233 | DOI | Zbl

[3] J. Littlewood, R. Paley, “Theorems on Fourier series and power series. II”, Proc. London Math. Soc., 42 (1936), 52–89 | DOI | Zbl

[4] J. Marcinkiewicz, A. Zygmund, “A theorem of Lusin”, Duke Math. J., 4 (1938), 473–485 | DOI | MR | Zbl

[5] A. Zigmund, Trigonometricheskie ryady, izd-vo “Mir”, Moskva, 1965 | MR

[6] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo “Mir”, Moskva, 1973 | MR

[7] V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s gladkoi granitsei”, Matem. sb., 101(143) (1976), 163–188

[8] V. P. Mikhailov, “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Diff. uravneniya, 12 (1976), 1877–1891

[9] F. Rise, V. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, IL, Moskva, 1954

[10] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo “Nauka”, Moskva, 1964 | MR