On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations
Sbornik. Mathematics, Tome 35 (1979) no. 6, pp. 823-849 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper functions $u(x)$ satisfying the inequality $L(u)+k(x)f(u)\leqslant0$ in a domain $\Omega$ are studied. Here $L(u)$ is a linear second order elliptic operator with positive definite characteristic form, $k(x)\geqslant0$, and $f(u)$ is defined in an interval $u^-, in which $f(u)>0$, $f'(u)\geqslant0$ and $\int_u^{u^+}\frac{ds}{f(s)}<\infty$. Bibliography: 13 titles.
@article{SM_1979_35_6_a3,
     author = {I. Kametaka and O. A. Oleinik},
     title = {On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {823--849},
     year = {1979},
     volume = {35},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_6_a3/}
}
TY  - JOUR
AU  - I. Kametaka
AU  - O. A. Oleinik
TI  - On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 823
EP  - 849
VL  - 35
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_6_a3/
LA  - en
ID  - SM_1979_35_6_a3
ER  - 
%0 Journal Article
%A I. Kametaka
%A O. A. Oleinik
%T On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations
%J Sbornik. Mathematics
%D 1979
%P 823-849
%V 35
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1979_35_6_a3/
%G en
%F SM_1979_35_6_a3
I. Kametaka; O. A. Oleinik. On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations. Sbornik. Mathematics, Tome 35 (1979) no. 6, pp. 823-849. http://geodesic.mathdoc.fr/item/SM_1979_35_6_a3/

[1] S. Chandrasekhar, An introduction to the study of stellar structure, Univ. of Chicago Press, USA, 1939 | Zbl

[2] I. M. Gelfand, “Nekotorye zadachi teorii kvazilineinykh uravnenii”, Uspekhi matem. nauk, XIV:2(86) (1959), 87–158

[3] S. I. Pokhozhaev, “O zadache Dirikhle dlya uravneniya $\Delta u=u^2$”, DAN SSSR, 134:4 (1960), 769–772 | Zbl

[4] S. I. Pokhozhaev, “O kraevoi zadache dlya uravneniya $\Delta u=u^2$”, DAN SSSR, 138:2 (1961), 305–308

[5] A. J. Callegari, E. L. Reiss, H. B. Keller, “Membrane buckling; a study of solution multiplicity”, Comm. Pure and Appl. Math., 24 (1971), 499–527 | DOI | MR

[6] O. A. Oleinik, “Ob uravnenii $\Delta u+k(x)e^u=0$”, Uspekhi matem. nauk, XXXIII:2(200) (1978), 203–204 | MR

[7] H. Fujita, “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo, Sect. 1, 13 (1966) | MR | Zbl

[8] K. Hayakawa, “On the limit state of solutions of some semilinear diffusion equations”, Osaka J. Math., 12 (1975), 767–776 | MR | Zbl

[9] K. Kobayashi, T. Sirao, H. Tanaka, “On the growing up problem for semilinear heat equations”, J. Math. Soc. Japan, 29 (1977), 407–424 | DOI | MR | Zbl

[10] J. L. Kazdan, F. W. Warner, “Remarks on some quasilinear elliptic equations”, Comm. Pure and Appl. Math., 28 (1975), 567–597 | DOI | MR | Zbl

[11] D. D. Joseph, T. S. Lundgren, “Quasilinear Dirichlet problems driven by positive sources”, Arch. Rational Mech. and Anal., 49 (1972–1973), 241–269 | MR

[12] S. I. Pokhozhaev, “Voprosy otsutstviya reshenii nelineinykh kraevykh zadach”, Trudy Vsesoyuznoi konferentsii po uravneniyam s chastnymi proizvodnymi, posvyaschennoi 75-letiyu akademika I. G. Petrovskogo, izd-vo MGU, Moskva, 1978, 200–203

[13] E. Bekkenbakh, R. Bellman, Neravenstva, Moskva, 1965