The exponential representation of flows and the chronological calculus
Sbornik. Mathematics, Tome 35 (1979) no. 6, pp. 727-785 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article is developed a calculus which reflects the most general group-theoretic properties of flows and which is based on an exponential representation of flows defined by nonstationary differential equations. Problems of optimization and control have had the greatest influence on the development of this calculus, and the results are intended mainly to treat these problems. Bibliography: 11 titles.
@article{SM_1979_35_6_a0,
     author = {A. A. Agrachev and R. V. Gamkrelidze},
     title = {The exponential representation of flows and the chronological calculus},
     journal = {Sbornik. Mathematics},
     pages = {727--785},
     year = {1979},
     volume = {35},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_6_a0/}
}
TY  - JOUR
AU  - A. A. Agrachev
AU  - R. V. Gamkrelidze
TI  - The exponential representation of flows and the chronological calculus
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 727
EP  - 785
VL  - 35
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_6_a0/
LA  - en
ID  - SM_1979_35_6_a0
ER  - 
%0 Journal Article
%A A. A. Agrachev
%A R. V. Gamkrelidze
%T The exponential representation of flows and the chronological calculus
%J Sbornik. Mathematics
%D 1979
%P 727-785
%V 35
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1979_35_6_a0/
%G en
%F SM_1979_35_6_a0
A. A. Agrachev; R. V. Gamkrelidze. The exponential representation of flows and the chronological calculus. Sbornik. Mathematics, Tome 35 (1979) no. 6, pp. 727-785. http://geodesic.mathdoc.fr/item/SM_1979_35_6_a0/

[1] H. J. Kelly, R. E. Kopp, H. G. Moyer, “Singular extremals”, Topics in Optimization, Acad. Press, 1967 | MR | Zbl

[2] P. Gabasov, F. M. Kirillova, Osobye optimalnye upravleniya, izd-vo “Nauka”, Moskva, 1973 | MR

[3] A. J. Krener, “The high order maximal principle and its application to singular extremals”, SIAM J. Control, 15:2 (1977), 256–293 | DOI | MR | Zbl

[4] H. Hermes, “Local controllability and sufficient conditions in singular problems. I; II”, J. Diif. Eq., 20:1 (1976), 213–232 | DOI | MR | Zbl

[5] H. W. Knobloch, High order necessary conditions and local contrallability, Math. Inst, der Univ. Würzburg, preprint, 1978 | Zbl

[6] A. A. Agrachev, R. V. Gamkrelidze, “Printsip optimalnosti vtorogo poryadka dlya zadachi bystrodeistviya”, Matem. sb., 100(142) (1976), 610–643 | Zbl

[7] A. A. Agrachev, “Neobkhodimoe uslovie optimalnosti vtorogo poryadka v obschem nelineinom sluchae”, Matem. sb., 102(144) (1977), 551–568 | Zbl

[8] R. Gamkrelidze, “Exponential representation of solutions of ordinary differential equations”, Proc. Equadiff. V Conf. Prague 1977, Springer-Verlag, 1978 | MR

[9] M. V. Karasev, M. V. Mosolova, “Beskonechnye proizvedeniya i $T$-proizvedeniya eksponent”, TMF, 28:2 (1976), 189–200 | MR | Zbl

[10] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, iz-do “Nauka”, Moskva, 1974 | MR

[11] K. Godbiion, Differentsialnaya geometriya i analiticheskaya mekhanika, izd-vo “Mir”, Moskva, 1973