Embedding theorems and a~characterization of traces in the spaces $H^p(U^n)$, $0$
Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 709-725
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete characterization is obtained of the measures $d\mu$ on the unit disk $U$ for which the operator $Df(z)=f(z,z,\dots,z)$ maps $H^p(U^n)$ into $L^p(d\mu)$, $0 p\infty$. The solution to a problem of W. Rudin is obtained as a corollary.
Bibliography: 16 titles.
@article{SM_1979_35_5_a5,
author = {F. A. Shamoyan},
title = {Embedding theorems and a~characterization of traces in the spaces $H^p(U^n)$, $0<p<\infty$},
journal = {Sbornik. Mathematics},
pages = {709--725},
publisher = {mathdoc},
volume = {35},
number = {5},
year = {1979},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1979_35_5_a5/}
}
F. A. Shamoyan. Embedding theorems and a~characterization of traces in the spaces $H^p(U^n)$, $0