On some algebraic characteristics of the algebra of all continuous functions on a~locally connected compactum
Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 681-696

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of this paper the algebra $C(X)$ is studied, and in the case of a locally connected compactum $X$ a characteristic of the algebra $C(X)$ is given from the point of view of the plentitude of roots of certain algebraic equations that it contains. In the second part a general method is given for constructing uniform algebras $A$ on suitable compacta $X$ which are different from $C(X)$ but have a number of properties in common with $C(X)$ (normality, algebraic closure, complete closure, etc.). In particular, these methods allow us to give, as a general concept, a new solution to a problem of Gleason concerning peak points. Bibliography: 19 titles.
@article{SM_1979_35_5_a3,
     author = {M. I. Karahanyan},
     title = {On some algebraic characteristics of the algebra of all continuous functions on a~locally connected compactum},
     journal = {Sbornik. Mathematics},
     pages = {681--696},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_5_a3/}
}
TY  - JOUR
AU  - M. I. Karahanyan
TI  - On some algebraic characteristics of the algebra of all continuous functions on a~locally connected compactum
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 681
EP  - 696
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_5_a3/
LA  - en
ID  - SM_1979_35_5_a3
ER  - 
%0 Journal Article
%A M. I. Karahanyan
%T On some algebraic characteristics of the algebra of all continuous functions on a~locally connected compactum
%J Sbornik. Mathematics
%D 1979
%P 681-696
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1979_35_5_a3/
%G en
%F SM_1979_35_5_a3
M. I. Karahanyan. On some algebraic characteristics of the algebra of all continuous functions on a~locally connected compactum. Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 681-696. http://geodesic.mathdoc.fr/item/SM_1979_35_5_a3/