Absolute continuity and singularity of locally absolutely continuous probability distributions. I
Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 631-680 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(\Omega,\mathscr F)$ be a measurable space provided with a nondecreasing family of $\sigma$-algebras ($\mathscr F_t)_{t\geqslant0}$ with $\mathscr F=\bigvee_{t\geqslant0}\mathscr F_t$ and $\widetilde{\mathsf P}$ and $\mathsf P$ two locally absolutely continuous probability measures on $(\Omega,\mathscr F)$, i.e., such that $\widetilde{\mathsf P}_t\ll\mathsf P_t$ for $t\geqslant0$ ($\widetilde{\mathsf P}_t$ and $\mathsf P_t$ are the restrictions of $\widetilde{\mathsf P}$ and $\mathsf P$ to $\mathscr F_t$). One asks when $\widetilde{\mathsf P}\ll \mathsf P$ or $\widetilde{\mathsf P}\perp\mathsf P$. An answer to this question is given in terms of the convergence set of a certain increasing predictable process constructed for the martingale $\mathfrak Z=(\mathfrak Z_t,\mathscr F_t,\mathsf P)$ with $\mathfrak Z_t=d\widetilde{\mathsf P}_t/d\mathsf P_t$. Actually, the somewhat more general situation of $\theta$-local absolute continuity of measures is studied. The proof of the fundamental theorem is based on a series of results that are of independent interest. In § 2 the theory of integration with respect to random measures is developed. § 4 deals with the convergence sets of semimartingales, and § 5 with the transformation of the predictable characteristics of a semimartingale under a locally absolutely continuous change of measure. Sufficient conditions are given in § 7 for the uniform integrability of nonnegative local martingales. Bibliography: 24 titles.
@article{SM_1979_35_5_a2,
     author = {Yu. M. Kabanov and R. Sh. Liptser and A. N. Shiryaev},
     title = {Absolute continuity and singularity of locally absolutely continuous probability {distributions.~I}},
     journal = {Sbornik. Mathematics},
     pages = {631--680},
     year = {1979},
     volume = {35},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_5_a2/}
}
TY  - JOUR
AU  - Yu. M. Kabanov
AU  - R. Sh. Liptser
AU  - A. N. Shiryaev
TI  - Absolute continuity and singularity of locally absolutely continuous probability distributions. I
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 631
EP  - 680
VL  - 35
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_5_a2/
LA  - en
ID  - SM_1979_35_5_a2
ER  - 
%0 Journal Article
%A Yu. M. Kabanov
%A R. Sh. Liptser
%A A. N. Shiryaev
%T Absolute continuity and singularity of locally absolutely continuous probability distributions. I
%J Sbornik. Mathematics
%D 1979
%P 631-680
%V 35
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1979_35_5_a2/
%G en
%F SM_1979_35_5_a2
Yu. M. Kabanov; R. Sh. Liptser; A. N. Shiryaev. Absolute continuity and singularity of locally absolutely continuous probability distributions. I. Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 631-680. http://geodesic.mathdoc.fr/item/SM_1979_35_5_a2/

[1] Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev, ““Predskazuemye” kriterii absolyutnoi nepreryvnosti i singulyarnosti veroyatnostnykh mer (sluchai nepreryvnogo vremeni)”, DAN SSSR, 237:5 (1977), 1016–1019 | MR | Zbl

[2] P. A. Meier, Veroyatnost i potentsialy, izd-vo “Mir”, Moskva, 1973

[3] K. Dellasheri, Emkosti i sluchainye protsessy, izd-vo “Mir”, Moskva, 1975 | MR

[4] P. A. Meyer, “Un cours sur les intégrates stochastiques”, Lecture Notes in Math., 511 (1976), 245–400 | DOI | MR | Zbl

[5] J. Jacod, “Multivariate point processes: predictoble projection, Radon–Nikodym derivatives, representation of martingales”, Z. W-theorie, 31 (1975), 235–253 | MR | Zbl

[6] J. Jacod, “Un théorème de répresentation pour les martingales discontinues”, Z. W-theorie, 34 (1976), 225–244 | MR | Zbl

[7] P. Sh. Liptser, A. N. Shiryaev, Statistika sluchainykh protsessov, izd-vo “Nauka”, Moskva, 1974 | MR

[8] X. Kunita, Sh. Vatanabe, “O martingalakh, integriruemykh s kvadratom”, Matematika, 15:1 (1971), 66–102 | Zbl

[9] J. Jacod, “Sur la construction des integrates stochastiques et les sous-espaces stables de martingales”, Lecture Notes in Math., 581 (1977), 390–410 | DOI | MR | Zbl

[10] D. Lepingle, “Sur la representation des sauts des martingales”, Lecture Notes in Math., 581 (1977), 418–434 | DOI | MR | Zbl

[11] C. S. Chou, “Le processus des sauts d'une martingale locale”, Lecture Notes in Math., 581 (1977), 356–361 | DOI | MR | Zbl

[12] B. I. Grigelionis, “O predstavlenii tselochislennykh sluchainykh mer kak stokhasticheskikh integralov po puassonovskoi mere”, Lit. matem. sb., XI:1 (1971), 93–108 | MR

[13] B. I. Grigelionis, “Sluchainye tochechnye protsessy i martingaly”, Lit. matem. sb., XV:3 (1975), 101–114 | MR

[14] J. Jacod, J. Memin, “Caractéristiques locales et conditions de continuité absolue pour les semimartingales”, Z. W-theorie, 35 (1976), 1–37 | MR | Zbl

[15] J. Jacod, “A general theorem of representation for martingales”, Proc. of Symposia in Pure Math., 31 (1977), 37–53 | MR

[16] B. I. Grigelionis, “O martingalnoi kharakterizatsii sluchainykh protsessov s nezavisimymi prirascheniyami”, Lit. matem. sb., XVII:1 (1977), 75–86 | MR

[17] Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev, “K voprosu ob absolyutnoi nepreryvnosti i singulyarnosti veroyatnostnykh mer”, Matem. sb., 104(146):2(10) (1977), 227–247 | MR | Zbl

[18] H. J. Engelbert, A. N. Shiryaev, On absolute continuity and singularity of probability measures, v. 6, Mathematical Statistics, Banach Center Publ. | Zbl

[19] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, izd-vo “Nauka”, Moskva, 1972 | MR

[20] R. S. Liptzer, A. N. Shiryaev, Statistics of random processes, v. I, II, Springer-Verlag, 1978

[21] J. H. Van Schuppen, E. Wong, “Transformation of local martingales under a change of law”, Ann. Math. Stat., 2:5 (1974), 879–888 | MR | Zbl

[22] C. Doléans-Dade, “Quelques applications de la formula de changement de variables pour les semimartingales”, Z. W-theorie, 16 (1970), 181–194 | MR | Zbl

[23] E. Lenglart, “Sur la convergence presque sure des martingales locales”, C. r. Acad, science. Paris, 284:17 (1977), A1085–A1088 | MR

[24] W. F. Stout, Almost sure convergence, Acad. Press, New-York, 1974 | MR | Zbl