The rate of convergence of Padé approximants for some elementary functions
Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 615-629 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, using an approximation method developed by V. K. Dzyadyk, the authors study the rate of convergence to zero of the difference between the functions $e^z$ and $(1+z)^\alpha$, and the corresponding Padé approximants. Bibliography: 28 titles.
@article{SM_1979_35_5_a1,
     author = {V. K. Dzyadyk and L. I. Filozof},
     title = {The rate of convergence of {Pad\'e} approximants for some elementary functions},
     journal = {Sbornik. Mathematics},
     pages = {615--629},
     year = {1979},
     volume = {35},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_5_a1/}
}
TY  - JOUR
AU  - V. K. Dzyadyk
AU  - L. I. Filozof
TI  - The rate of convergence of Padé approximants for some elementary functions
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 615
EP  - 629
VL  - 35
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_5_a1/
LA  - en
ID  - SM_1979_35_5_a1
ER  - 
%0 Journal Article
%A V. K. Dzyadyk
%A L. I. Filozof
%T The rate of convergence of Padé approximants for some elementary functions
%J Sbornik. Mathematics
%D 1979
%P 615-629
%V 35
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1979_35_5_a1/
%G en
%F SM_1979_35_5_a1
V. K. Dzyadyk; L. I. Filozof. The rate of convergence of Padé approximants for some elementary functions. Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 615-629. http://geodesic.mathdoc.fr/item/SM_1979_35_5_a1/

[1] V. K. Dzyadyk, “O primenenii lineinykh metodov k priblizheniyu polinomami reshenii obyknovennykh differentsialnykh uravnenii i integralnykh uravnenii Gammershteina”, Izv. AN SSSR, seriya matem., 34 (1970), 827–848 | Zbl

[2] V. K. Dzyadyk, “Ob effektivnom postroenii mnogochlenov, kotorye osuschestvlyayut blizkoe k nailuchshemu priblizhenie funktsii $e^x$, $\sin x$ i dr.”, Ukr. matem. zh., 25:4 (1973), 435–453 | MR

[3] V. K. Dzyadyk, “Approksimatsionnyi metod priblizheniya algebraicheskimi mnogochlenami reshenii lineinykh differentsialnykh uravnenii”, Izv. AN SSSR, seriya matem., 38 (1974), 937–967 | Zbl

[4] H. Pade, “Sur la representation approchee d'une fraction par des fractions rationnelles”, Ann. scient. École norm, supeŕ, 9 (1892), 1–93 | MR

[5] G. A. Baker, The Pade Approximant Method an Some Related Generalizations. The Pade Approximant in Theoretical Physics, Academie Press, New York–London, 1970

[6] C. Brezinski, “A bibliography on Pade approximation and some related matters”, Lect. Notes Phys., 47 (1976), 245–267 | DOI | Zbl

[7] O. Perron, Die Lehre von den Kettenbrüchen, Chel. Publ. Comp., New York, 1948 | MR

[8] H. S. Wall, Analytic theory of continued fractions, D. von Nostrand, New York, 1948 | MR

[9] G. A. Baker, Essential of Pade Approximant, Academie Press, New York, 1975

[10] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97(139) (1975), 607–629 | Zbl

[11] E. A. Rakhmanov, “O skhodimosti diagonalnykh, approksimatsii Pade”, Matem. sb., 104(146) (1977), 271–291 | Zbl

[12] E. M. Nikishin, “O skhodimosti approksimatsii Pade dlya nekotorykh funktsii”, Matem. sb., 101(143) (1976), 278–292

[13] P. L. Chebyshev, Polnoe sobranie sochinenii, t. 2, 3, izd-vo AN SSSR, Moskva, 1948 | MR

[14] A. A. Markov, Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee otklonyayuschikhsya ot nulya, Gostekhizdat, Moskva – Leningrad, 1948

[15] T. I. Stiltes, Issledovaniya o nepreryvnykh drobyakh, ONTI, Moskva – Kharkov, 1936

[16] G. D. Alien, C. K. Chul, W. R. Madych, F. J. Narcowich, P. W. Smith, “Pade approxim'ants and orthogonal polynomials”, Bull. Austral. Math. Soc., 10 (1974), 263–270 | DOI | MR

[17] G. D. Allen, C. K. Chul, W. R. Madych, F. J. Narcowich, P. W. Smith, “Pade approximations and Gaussian quadrature”, Bull. Austral. Math. Soc., 11 (1974), 63–69 | DOI | MR | Zbl

[18] J. Karlsson, “The convergence of Pade approximants to series of Stieltjes”, Ark. Math., 14:1 (1976), 43–53 | DOI | MR | Zbl

[19] Y. L. Luke, The special functions and their approximations, v. 53, Academie Press, New York and London, 1969 | Zbl

[20] E. B. Saff, “The convergence of rational functions of best approximation to the exponential function”, Trans. Amer. Math. Soc., 153 (1971), 483–493 | DOI | MR | Zbl

[21] E. B. Saff, “The covergence of rational functions of best approximation to the exponential function”, Proc. Amer. Math. Soc., 32:1 (1972), 187–194 | DOI | MR | Zbl

[22] E. B. Saff, “On the degree of best rational approximation to the exponential function”, J. Approx. Theory, 9:2 (1973), 97–101 | DOI | MR | Zbl

[23] K. Lantsosh, Prakticheskie metody prikladnogo analiza, Fizmatgiz, Moskva, 1961

[24] L. Euler, “Comentatio in fractionem continuam qua illustris La Grange potestates binomiales expressit”, Mem. Acad. Imper. Sei. Petersb., 6 (1813–1814), 3–11

[25] E. B. Saff, R. S. Varga and W.-C. Ni, “Geometrie Convergence of Rational Approximations to $e^{-z}$ in Infinite Sectors”, Numer. Math., 26:2 (1976), 211–225 | DOI | MR | Zbl

[26] E. B. Saff, R. S. Varga and W.-C. Ni, “Convergence of Pade approximants to $e^{-z}$ on unbounded sets”, J. Approx. Theory, 13 (1975), 470–488 | DOI | MR | Zbl

[27] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, izd-vo “Nauka”, Moskva, 1976 | MR

[28] F. Trikomi, Integralnye uravneniya, IL, Moskva, 1966