Analytic continuation of symmetric squares
Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 593-614
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the author constructs a holomorphic analytic continuation onto the whole complex plane of special Euler products-symmetric squares-corresponding to Siegel modular forms for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$.
The proof of this theorem is based on the analytic properties of “mixed” Eisenstein series for “arithmetic” congruence-subgroups $\Gamma_0(q)$ of $\operatorname{Sp}_2(\mathbf Z)$ with character $\chi$. The paper contains a proof that holomorphic analytic continuation onto the whole complex plane is possible for these series, and a derivation of their functional equation in the case of primitive $\chi$.
Bibliography: 13 titles.
@article{SM_1979_35_5_a0,
author = {V. A. Gritsenko},
title = {Analytic continuation of symmetric squares},
journal = {Sbornik. Mathematics},
pages = {593--614},
publisher = {mathdoc},
volume = {35},
number = {5},
year = {1979},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/}
}
V. A. Gritsenko. Analytic continuation of symmetric squares. Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 593-614. http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/