Analytic continuation of symmetric squares
Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 593-614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author constructs a holomorphic analytic continuation onto the whole complex plane of special Euler products-symmetric squares-corresponding to Siegel modular forms for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$. The proof of this theorem is based on the analytic properties of “mixed” Eisenstein series for “arithmetic” congruence-subgroups $\Gamma_0(q)$ of $\operatorname{Sp}_2(\mathbf Z)$ with character $\chi$. The paper contains a proof that holomorphic analytic continuation onto the whole complex plane is possible for these series, and a derivation of their functional equation in the case of primitive $\chi$. Bibliography: 13 titles.
@article{SM_1979_35_5_a0,
     author = {V. A. Gritsenko},
     title = {Analytic continuation of symmetric squares},
     journal = {Sbornik. Mathematics},
     pages = {593--614},
     year = {1979},
     volume = {35},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/}
}
TY  - JOUR
AU  - V. A. Gritsenko
TI  - Analytic continuation of symmetric squares
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 593
EP  - 614
VL  - 35
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/
LA  - en
ID  - SM_1979_35_5_a0
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%T Analytic continuation of symmetric squares
%J Sbornik. Mathematics
%D 1979
%P 593-614
%V 35
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/
%G en
%F SM_1979_35_5_a0
V. A. Gritsenko. Analytic continuation of symmetric squares. Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 593-614. http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/

[1] A. N. Andrianov, “Simmetricheskie kvadraty dzeta-funktsii zigelevykh modulyarnykh form roda $2$”, Trudy Matem. in-ta im. V. A. Steklova, CXLII, 1976, 22–45 | MR

[2] A. N. Andrianov, “O razlozhenii mnogochlenov Gekke dlya simpleksicheskoi gruppy roda $2$”, Matem. sb., 104(146) (1977), 390–427 | MR | Zbl

[3] S. A. Evdokimov, “Eilerovy proizvedeniya dlya kongruents-podgrupp zigelevoi gruppy roda $2$”, Matem. sb., 99(141) (1976), 483–514 | MR

[4] V. A. Gritsenko, “Simmetricheskie kvadraty dzeta-funktsii dlya glavnoi kongruents-podgruppy gruppy Zigelya roda $2$”, Matem. sb., 104(146) (1977), 22–41 | Zbl

[5] V. L. Kalinin, “Ryady Eizenshteina na simplekticheskoi gruppe”, Matem. sb., 103(145) (1977), 519–549 | MR | Zbl

[6] H. Maass, “Siegel's modular forms and Dirichlet series”, Lecture Notes in Math., 216 (1971) | MR | Zbl

[7] H. Maass, “Dirichletsche Reihen und Modulformen zweiten Grades”, Acta arithm., 24:3 (1973), 225–238 | MR | Zbl

[8] G. Kaufhold, “Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2 Grades”, Math. Ann., 137:5 (1959), 454–476 | DOI | MR | Zbl

[9] M. Koecher, “Über Thetareihen idefiniter quadratischer Formen”, Math. Nachr., 9 (1953), 51–85 | DOI | MR | Zbl

[10] R. A. Rankin, “Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions”, II, Proc. Cambridge Phil. Soc., 35:3 (1939), 357–372 | DOI | MR | Zbl

[11] G. Simura, “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc., 31:1 (1975), 79–98 | DOI | MR

[12] Yu. I. Manin, A. A. Panchishkin, “Svertki ryadov Gekke i ikh znacheniya v tselykh tochkakh”, Matem. sb., 104(146) (1977), 617–651 | MR | Zbl

[13] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, izd-vo “Nauka”, Moskva, 1975 | MR | Zbl