Analytic continuation of symmetric squares
Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 593-614

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author constructs a holomorphic analytic continuation onto the whole complex plane of special Euler products-symmetric squares-corresponding to Siegel modular forms for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$. The proof of this theorem is based on the analytic properties of “mixed” Eisenstein series for “arithmetic” congruence-subgroups $\Gamma_0(q)$ of $\operatorname{Sp}_2(\mathbf Z)$ with character $\chi$. The paper contains a proof that holomorphic analytic continuation onto the whole complex plane is possible for these series, and a derivation of their functional equation in the case of primitive $\chi$. Bibliography: 13 titles.
@article{SM_1979_35_5_a0,
     author = {V. A. Gritsenko},
     title = {Analytic continuation of symmetric squares},
     journal = {Sbornik. Mathematics},
     pages = {593--614},
     publisher = {mathdoc},
     volume = {35},
     number = {5},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/}
}
TY  - JOUR
AU  - V. A. Gritsenko
TI  - Analytic continuation of symmetric squares
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 593
EP  - 614
VL  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/
LA  - en
ID  - SM_1979_35_5_a0
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%T Analytic continuation of symmetric squares
%J Sbornik. Mathematics
%D 1979
%P 593-614
%V 35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/
%G en
%F SM_1979_35_5_a0
V. A. Gritsenko. Analytic continuation of symmetric squares. Sbornik. Mathematics, Tome 35 (1979) no. 5, pp. 593-614. http://geodesic.mathdoc.fr/item/SM_1979_35_5_a0/