A characterization of infinite Chernikov groups that are not finite extensions of quasi-cyclic groups
Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 569-580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We characterize the groups named in the title. Our main result is as follows: an infinite locally finite group $G$ that is not a finite extension of a quasi-cyclic group is a Chernikov group if and only if it has a subgroup $H$ of finite index whose holomorph contains a copy of the four-group in such a way that the centralizer in $H$ of each of its three involutions is a Chernikov group. Bibliography: 17 titles.
@article{SM_1979_35_4_a8,
     author = {A. A. Shafiro and V. P. Shunkov},
     title = {A~characterization of infinite {Chernikov} groups that are not finite extensions of quasi-cyclic groups},
     journal = {Sbornik. Mathematics},
     pages = {569--580},
     year = {1979},
     volume = {35},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_4_a8/}
}
TY  - JOUR
AU  - A. A. Shafiro
AU  - V. P. Shunkov
TI  - A characterization of infinite Chernikov groups that are not finite extensions of quasi-cyclic groups
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 569
EP  - 580
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_4_a8/
LA  - en
ID  - SM_1979_35_4_a8
ER  - 
%0 Journal Article
%A A. A. Shafiro
%A V. P. Shunkov
%T A characterization of infinite Chernikov groups that are not finite extensions of quasi-cyclic groups
%J Sbornik. Mathematics
%D 1979
%P 569-580
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1979_35_4_a8/
%G en
%F SM_1979_35_4_a8
A. A. Shafiro; V. P. Shunkov. A characterization of infinite Chernikov groups that are not finite extensions of quasi-cyclic groups. Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 569-580. http://geodesic.mathdoc.fr/item/SM_1979_35_4_a8/

[1] Yu. I. Merzlyakov, “Matrichnoe predstavlenie grupp vneshnikh avtomorfizmov chernikovskikh grupp”, Algebra i logika, 8:4 (1969), 478–482 | Zbl

[2] A. G. Kurosh, Teoriya grupp, izd-vo “Nauka”, Moskva, 1967 | MR

[3] O. Kegel, B. A. F. Wehrfritz, Locally Finite Groups, New-York, 1973 | MR

[4] D. Gorenstein, K. Harada, “Finite Groups whose Silow $2$-subgroups are generated at most $4$ elements”, Mem. Amer. Math. Soc., 74, 147

[5] V. P. Shunkov, “O probleme minimalnosti dlya lokalno konechnykh grupp”, Algebra i logika, 9:2 (1970), 220–248 | MR | Zbl

[6] V. P. Shunkov, “O lokalno konechnoi gruppe s ekstremalnymi silovskimi $p$-podgruppami po nekotoromu prostomu chislu $p$”, Sib. matem. zh., 8:1 (1967), 213–229

[7] V. P. Shunkov, “O lokalno konechnykh gruppakh s usloviem minimalnosti dlya abelevykh podgrupp”, Algebra i logika, 9:5 (1970), 579–615 | Zbl

[8] V. P. Shunkov, “Ob abstraktnykh kharakterizatsiyakh nekotorykh lineinykh grupp”, Algebra. Matritsy i matrichnye gruppy, Krasnoyarsk, 1970, 5–54 | Zbl

[9] W. Feit, J. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13 (1963), 775–1029 | MR | Zbl

[10] A. A. Shafiro, V. P. Shunkov, “O lokalno konechnykh gruppakh s chernikovskimi tsentralizatorami involyutsii”, Issledovaniya po teorii grupp, Krasnoyarsk, 1975, 128–146

[11] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, izd-vo “Nauka”, Moskva, 1977 | MR | Zbl

[12] N. Blackburn, “Some remarks on Cernikov $p$-groups”, Illinois J. Math., 6 (1962), 421–433 | MR | Zbl

[13] Yu. M. Gorchakov, “O beskonechnykh gruppakh Frobeniusa”, Algebra i logika, 4:1 (1965), 15–29 | MR | Zbl

[14] Yu. M. Gorchakov, “O lokalno normalnykh gruppakh”, DAN SSSR, 147:3 (1962), 537–539 | Zbl

[15] S. N. Chernikov, “O periodicheskikh gruppakh avtomorfizmov ekstremalnykh grupp”, Matem. zametki, 4:1 (1968), 91–96 | MR | Zbl

[16] A. I. Maltsev, “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25(67) (1949), 347–356

[17] A. Mac-Williams, “On $2$-groups with no normal abelian subgroups of rank $3$ and their occurence as Silow $2$-subgroups of finite simple groups”, Trans. Amer. Math. Soc., 150:2 (1970), 342–408 | DOI | MR