On the $\alpha$-decompositions of characteristic functions that are limiting values of analytic functions
Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 555-567
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper an affirmative answer is given to the following question of D. Dugué: Are the $\alpha$-components of a characteristic function, analytic in the strip $I=\{t:a<\operatorname{Im}t<0\}$, $a<0$, analytic in the same strip? Bibliography: 6 titles.
@article{SM_1979_35_4_a7,
author = {G. P. Chistyakov},
title = {On the $\alpha$-decompositions of characteristic functions that are limiting values of analytic functions},
journal = {Sbornik. Mathematics},
pages = {555--567},
year = {1979},
volume = {35},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1979_35_4_a7/}
}
G. P. Chistyakov. On the $\alpha$-decompositions of characteristic functions that are limiting values of analytic functions. Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 555-567. http://geodesic.mathdoc.fr/item/SM_1979_35_4_a7/
[1] Yu. V. Linnik, I. V. Ostrovskii, Razlozheniya sluchainykh velichin i vektorov, izd-vo “Nauka”, Moskva, 1972 | MR
[2] A. A. Zinger, Yu. V. Linnik, “Ob odnom analiticheskom obobschenii teoremy G. Kramera”, Vestnik LGU, 1955, no. 11, 51–56 | MR | Zbl
[3] D. Dugué, “Resultats sur les fonctions absolument monotones et applications a l'arithmétique des fonctions de type positif”, C. r. Acad, scient., Paris, 244 (1957), 715–717 | MR | Zbl
[4] Yu. V. Linnik, “Ob "$\alpha$-razlozheniyakh" bezgranichno delimykh veroyatnostnykh zakonov”, Vestnik LGU, 1959, no. 1, 14–23 | MR | Zbl
[5] D. Duqué, Arithmétique des lols de probabilités, Paris, 1957
[6] G. Kramer, Sluchainye velichiny i raspredeleniya veroyatnostei, Gostekhizdat, Moskva, 1947