Finite-dimensional irreducible representations of Hamiltonian Lie superalgebras
Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 541-554
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe all of the irreducible representations of the simple algebras of the series $H(n)$, and we realize these representations either as irreducible induced representations of a Lie subalgebra of $H(n)$ or as subrepresentations of the representation of the Hamiltonian vector fields in the space of differential forms on a supermanifold; these cases are mutually exclusive. Bibliography: 7 titles.
@article{SM_1979_35_4_a6,
author = {A. V. Shapovalov},
title = {Finite-dimensional irreducible representations of {Hamiltonian} {Lie} superalgebras},
journal = {Sbornik. Mathematics},
pages = {541--554},
year = {1979},
volume = {35},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1979_35_4_a6/}
}
A. V. Shapovalov. Finite-dimensional irreducible representations of Hamiltonian Lie superalgebras. Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 541-554. http://geodesic.mathdoc.fr/item/SM_1979_35_4_a6/
[1] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, izd-vo “Nauka”, Moskva, 1965 | MR
[2] V. G. Kats, “Klassifikatsiya prostykh superalgebr Li”, Funkts. analiz, 9:3 (1975), 263–265
[3] V. G. Kac, “A sketch of Lie superalgebra theory”, Comm. Math. Phys., 53 (1977), 31–64 | DOI | MR | Zbl
[4] V. G. Kac, “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl
[5] D. A. Leites, “Kogomologii superalgebr Li”, Funkts. analiz, 9:4 (1975), 75–76 | MR | Zbl
[6] A. N. Rudakov, “Neprivodimye predstavleniya beskonechnomernykh algebr Li kartanovskogo tipa”, Izv. AN SSSR, seriya matem., 38 (1974), 835–866 | MR | Zbl
[7] Zh-P. Serr, Algebry Li i gruppy Li, izd-vo “Mir”, Moskva, 1969 | MR