Averaging differential operators with almost periodic, rapidly oscillating coefficients
Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 481-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem $$ D_ia_{ij}(x\varepsilon^{-1})D_ju_\varepsilon(x)=f(x)\quad\text{in}\quad\Omega,\qquad u_\varepsilon(x)|_{\partial\Omega}=f_1(x), $$ containing a small parameter $\varepsilon$ is considered, where the coefficients $a_{ij}(y)$ are almost periodic functions in the sense of Besicovitch. An averaged equation having constant coefficients is contracted, and the convergence of $u_\varepsilon(x)$ to the solution $u_0(x)$ of the averaged equation is proved. An estimate of the remainder $\sup_{x\in\Omega}|u_\varepsilon(x)-u_0(x)|\leqslant C\varepsilon$ is obtained under the condition that there are no anomalous commensurable frequences in the spectrum of the coefficients. For the problem in the whole space a complete asymptotic expansion in powers of $\varepsilon$ is constructed. Bibliography: 12 titles.
@article{SM_1979_35_4_a2,
     author = {S. M. Kozlov},
     title = {Averaging differential operators with almost periodic, rapidly oscillating coefficients},
     journal = {Sbornik. Mathematics},
     pages = {481--498},
     year = {1979},
     volume = {35},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_4_a2/}
}
TY  - JOUR
AU  - S. M. Kozlov
TI  - Averaging differential operators with almost periodic, rapidly oscillating coefficients
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 481
EP  - 498
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_4_a2/
LA  - en
ID  - SM_1979_35_4_a2
ER  - 
%0 Journal Article
%A S. M. Kozlov
%T Averaging differential operators with almost periodic, rapidly oscillating coefficients
%J Sbornik. Mathematics
%D 1979
%P 481-498
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1979_35_4_a2/
%G en
%F SM_1979_35_4_a2
S. M. Kozlov. Averaging differential operators with almost periodic, rapidly oscillating coefficients. Sbornik. Mathematics, Tome 35 (1979) no. 4, pp. 481-498. http://geodesic.mathdoc.fr/item/SM_1979_35_4_a2/

[1] M. I. Freidlin, “Zadacha Dirikhle dlya uravneniya s periodicheskimi koeffitsientami, zavisyaschimi ot malogo parametra”, Teoriya veroyatn., 9:1 (1964), 133–139 | MR | Zbl

[2] De Giorgi, S. Spagnolo, “Sulla convergenza degli integrati dell'energia per operatori ellitiche”, Boll. Un. Mat. ital., 8 (1973), 391–411 | MR | Zbl

[3] H. S. Bakhvalov, “Osrednenie periodicheskikh struktur”, DAN SSSR, 218:5 (1974), 1046–1048

[4] V. L. Berdichevskii, “Prostranstvennoe osrednenie periodicheskikh struktur”, DAN SSSR, 222:3 (1975), 565–567 | MR | Zbl

[5] A. Bensoussan, J.-L. Lions, G. Papanicolaou, “Sur quelques phénornenes asymptotiques stationaires”, C. r. Acad, scient. Paris, 281 (1975), 89–94 | MR | Zbl

[6] J.-L. Lions, Quelques problemes de analyse mechanice et control optimal Montreal, 1976

[7] A. Bensoussan, J.-L. Lions, G. Papanicolaou, “Sur de noveauex problemes asymptotiques”, CRAS, 282 (19 Janvier 1976), 143–147 | MR | Zbl

[8] M. A. Shubin, “Psevdodifferentsialnye pochti-periodicheskie operatory i algebry fon Neimana”, Trudy mosk. matem. ob-va, XXXV (1976), 103–164

[9] E. M. Landis, G. P. Panasenko, “Teorema ob asimptotike reshenii ellipticheskikh uravnenii s koeffitsientami, periodicheskimi po vsem peremennym, krome odnoi”, DAN SSSR, 235:6 (1977), 1253–1255 | MR | Zbl

[10] G. P. Panasenko, Trudy konfer. molodykh uchenykh fak-ta vychisl. matem. i kibernetiki, vyp. 3, izd-vo MGU, 1977 | Zbl

[11] S. Spagnolo, “Sulla convergenzadi solutioni di equazioni paraboliche ed elliiche”, Ann. Sci. Norm. Super. Pisa, 22:3 (1968), 571–597 | MR

[12] G. Stampacchia, “Le probleme de Dirichlet pour les equations elliptique du seconde ordre a coefficients discontinues”, Ann. Inst. Fourier, Grenoble, 15:1 (1965), 189–258 | MR | Zbl