On the asymptotic behavior, for large values of the time, of solutions of exterior boundary value problems for the wave equation with two space variables
Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 377-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Waves are constructed which characterize the behavior, for large values of time $t$, of the Green's functions of the basic exterior boundary value problems for the wave equation with two space variables (behind the wave front). Representations of the Green's functions (and the solutions) are obtained in the form of series, asymptotic in $t$ as $t\to\infty$. The principle of limiting amplitude is proved, i.e., the existence of the limit $\lim_{t\to\infty}u(t,x)e^{i\omega t}=v(x,\omega)$ is established for solutions of the basic exterior boundary value problems for the wave equation in the case of a time-periodic driving force ($u_{tt}=\Delta u-f(x)e^{-i\omega t}$), and a representation is obtained for the difference $u(t,x)-v(x,\omega)e^{-i\omega t}$ in the form of a series asymptotic in $t$ as $t\to\infty$; it is shown that the rate of emergence of a solution $u(t,x)$ to a periodic regime $v(x,\omega)e^{-i\omega t}$ cannot be greater than a power of $t$. Bibliography: 18 titles.
@article{SM_1979_35_3_a5,
     author = {L. A. Muravei},
     title = {On the asymptotic behavior, for large values of the time, of solutions of exterior boundary value problems for the wave equation with two space variables},
     journal = {Sbornik. Mathematics},
     pages = {377--423},
     year = {1979},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_3_a5/}
}
TY  - JOUR
AU  - L. A. Muravei
TI  - On the asymptotic behavior, for large values of the time, of solutions of exterior boundary value problems for the wave equation with two space variables
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 377
EP  - 423
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_3_a5/
LA  - en
ID  - SM_1979_35_3_a5
ER  - 
%0 Journal Article
%A L. A. Muravei
%T On the asymptotic behavior, for large values of the time, of solutions of exterior boundary value problems for the wave equation with two space variables
%J Sbornik. Mathematics
%D 1979
%P 377-423
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1979_35_3_a5/
%G en
%F SM_1979_35_3_a5
L. A. Muravei. On the asymptotic behavior, for large values of the time, of solutions of exterior boundary value problems for the wave equation with two space variables. Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 377-423. http://geodesic.mathdoc.fr/item/SM_1979_35_3_a5/

[1] L. A. Muravei, “Ob asimptoticheskom povedenii pri bolshikh znacheniyakh vremeni resheniya odnoi vneshnei kraevoi zadachi dlya volnovogo uravneniya”, DAN SSSR, 220:2 (1975), 289–292 | MR | Zbl

[2] L. A. Muravei, “Ob asimptoticheskom povedenii pri bolshikh znacheniyakh vremeni funktsii Grina pervoi vneshnei kraevoi zadachi dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, DAN SSSR, 220:6 (1975), 1271–1273 | MR | Zbl

[3] P. Lax, C. Morawetz, R. Phillips, “Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle”, Comm. Pure and Appl. Math., 16 (1963), 477–487 | DOI | MR

[4] C. S. Morawetz, J. V. Ralston and W. A. Strauss, “Decay of solutions of the wave equation outside nontrapping obstacles”, Comm. Pure and Appl. Math., 30 (1977), 447–508 | DOI | MR | Zbl

[5] V. P. Mikhailov, “O printsipe predelnoi amplitudy”, DAN SSSR, 159:4 (1964), 750–752

[6] I. N. Vekua, “O metagarmonicheskikh funktsiyakh”, Trudy Tbilisskogo matem. in-ta, 12 (1943), 105–166

[7] L. A. Muravei, “Analiticheskoe prodolzhenie po parametru funktsii Grina vneshnikh kraevykh zadach dlya dvumernogo uravneniya Gelmgoltsa. III”, Matem. sb., 105(147) (1978), 63–109 | MR

[8] L. A. Muravei, “Ubyvanie reshenii vtoroi vneshnei kraevoi zadachi dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, DAN SSSR, 193:5 (1970), 996–999 | Zbl

[9] L. A. Muravei, “Asimptoticheskoe povedenie reshenii vtoroi vneshnei kraevoi zadachi dlya dvumernogo volnovogo uravneniya”, Diff. uravneniya, 6:12 (1970), 2248–2262 | MR | Zbl

[10] L. A. Muravei, “Ob asimptoticheskom povedenii pri bolshikh znacheniyakh vremeni reshenii vtoroi vneshnei kraevoi zadachi dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, Materialy III-go Sovetsko-Chekhosl. sovesch. (mai 1971 g.), 1972, 157–161 | MR

[11] L. A. Muravei, “Ob asimptoticheskom povedenii reshenii tretei vneshnei kraevoi zadachi dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, DAN SSSR, 205:4 (1972), 780–782 | MR | Zbl

[12] L. A. Muravei, “Asimptoticheskoe povedenie pri bolshikh znacheniyakh vremeni reshenii vtoroi i tretei vneshnikh kraevykh zadach dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, Trudy matem. in-ta im. V. A. Steklova, CXXVI (1973), 73–144 | MR

[13] V. M. Babich, “Ob asimptotike funktsii Grina nekotorykh volnovykh zadach. II. Nestatsionarnyi sluchai”, Matem. sb., 87(129) (1972), 44–57 | Zbl

[14] A. N. Tikhonov, A. A. Samarskii, “O printsipe izlucheniya”, ZhETF, 18:2 (1948), 243–248

[15] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, izd-vo “Nauka”, Moskva, 1976 | MR

[16] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, Fizmatgiz, Moskva, 1961

[17] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, izd-vo “Nauka”, Moskva, 1967 | MR

[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, Moskva, 1962