On passing to the limit in degenerate Bellman equations. II
Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 351-362 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In part I normalized parabolic Bellman equations of the form $Fu=0$ were studied; in this part ordinary Bellman equations, i.e. equations solved for the derivative with respect to $t$, are considered. While it was assumed in part I that the $u_n$ and $u$ have bounded weak derivatives with respect to $t$, it is merely assumed here that they are of bounded variation with respect to $t$. As before, the second derivatives with respect to $x$ of the convex (in $x$) functions $u_n$ and $u$ are understood in the generalized sense (as measures), while the equations $Fu_n=0$ and $Fu=0$ are considered in a lattice of measures. Bibliography: 4 titles.
@article{SM_1979_35_3_a3,
     author = {N. V. Krylov},
     title = {On passing to the limit in degenerate {Bellman} {equations.~II}},
     journal = {Sbornik. Mathematics},
     pages = {351--362},
     year = {1979},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_3_a3/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On passing to the limit in degenerate Bellman equations. II
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 351
EP  - 362
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_3_a3/
LA  - en
ID  - SM_1979_35_3_a3
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On passing to the limit in degenerate Bellman equations. II
%J Sbornik. Mathematics
%D 1979
%P 351-362
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1979_35_3_a3/
%G en
%F SM_1979_35_3_a3
N. V. Krylov. On passing to the limit in degenerate Bellman equations. II. Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 351-362. http://geodesic.mathdoc.fr/item/SM_1979_35_3_a3/

[1] N. V. Krylov, “O predelnom perekhode v vyrozhdennykh uravneniyakh Bellmana I”, Matem. sb., 106(148) (1978), 214–233 | MR | Zbl

[2] N. Danford, Dzh. T. Shvarts, Lineinye operatory, obschaya teoriya, IL, Moskva, 1962

[3] N. V. Krylov, Upravlyaemye protsessy diffuzionnogo tipa, izd-vo “Nauka”, Moskva, 1977 | MR

[4] N. V. Krylov, “Nekotorye svoistva normalnogo izobrazheniya vypuklykh funktsii”, Matem. sb., 105(147) (1978), 180–191 | MR | Zbl