Some analytic properties of convex sets in Riemannian spaces
Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 333-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate analytic properties of the boundary $bC$ of a locally convex set $C$ in a Riemannian space $M^n$, $n\geqslant2$, in particular, its mean curvature $H$ as a function of the set. For an $M^3$ of nonnegative curvature we prove the inequality $$ 4\pi\chi(bC)t_0\leq H(bC)+\Omega(C), $$ where $\chi$ is the Euler characteristic, $t_0$ the radius of the largest ball inscribed in $C$, and $\Omega(C)$ the scalar curvature of $C$. Bibliography: 16 titles.
@article{SM_1979_35_3_a2,
     author = {S. V. Buyalo},
     title = {Some analytic properties of convex sets in {Riemannian} spaces},
     journal = {Sbornik. Mathematics},
     pages = {333--350},
     year = {1979},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_3_a2/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - Some analytic properties of convex sets in Riemannian spaces
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 333
EP  - 350
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_3_a2/
LA  - en
ID  - SM_1979_35_3_a2
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T Some analytic properties of convex sets in Riemannian spaces
%J Sbornik. Mathematics
%D 1979
%P 333-350
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1979_35_3_a2/
%G en
%F SM_1979_35_3_a2
S. V. Buyalo. Some analytic properties of convex sets in Riemannian spaces. Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 333-350. http://geodesic.mathdoc.fr/item/SM_1979_35_3_a2/

[1] J. Cheeger, D. Gromoll, “On the structure of complete manifolds of nonnegative curvature”, Ann. Math., 96:3 (1972), 413–443 | DOI | MR | Zbl

[2] Yu. A. Volkov, B. V. Dekster, “Otsenka krivizny trekhmernoi razvertki”, Matem. sb., 83(145) (1970), 616–638 | MR | Zbl

[3] V. A. Sharafutdinov, Polnye otkrytye mnogoobraziya neotritsatelnoi krivizny, Kand. dissertatsiya, NGU, Novosibirsk, 1973

[4] W. A. Poor, “Some results on nonnegatively curved manifolds”, J. Diff. Geom., 9:4 (1974), 583–600 | MR | Zbl

[5] R. Walter, “On the matric projection into convex sets in riemannian spaces”, Arch. Math., 25 (1974), 91–98 | DOI | MR | Zbl

[6] R. Walter, “Some analytical properties of geodesically convex sets”, Abh. Math. Sem. Univ. Hamburg, 45 (1976), 263–282 | DOI | MR | Zbl

[7] Yu. D. Burago, “O trekhmernykh otkrytykh rimanovykh prostranstvakh neotritsatelnoi krivizny”, Zapiski nauchnykh seminarov LOMI, 66 (1976), 103–113 | MR | Zbl

[8] Yu. D. Burago, V. A. Zalgaller, “Vypuklye mnozhestva v rimanovykh prostranstvakh neotritsatelnoi krivizny”, Uspekhi matem. nauk, XXXII:3(195) (1977), 3–56 | MR

[9] F. W. Warner, “Extension of the Rauch comparison theorem to submanifolds”, Trans. Amer. Math. Soc., 122 (1966), 341–356 | DOI | MR | Zbl

[10] S. V. Buyalo, “Kratchaishie na vypuklykh poverkhnostyakh rimanova prostranstva”, Zapiski nauchnykh seminarov LOMI, 66 (1976), 114–132 | Zbl

[11] S. V. Buyalo, “Teorema sravneniya dlya ob'emov v rimanovoi geometrii”, Ukr. geom. sb., vyp. 21, Kharkov | Zbl

[12] H. Federer, Geometric measure theory, Springer-Verlag, Berlin, 1969 | MR

[13] K. Grove and K. Shiohama, A generalized sphere theorem, Københ. Univ. Math. Inst., Preprint Ser., no. 23, 1975 | MR

[14] R. E. Green and W. Wu, “On the subharmonicity and plurisubharmonicity of geodesically convex functions”, Indian Univ. Math. J., 22:7 (1973), 641–654 | DOI | MR

[15] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo “Mir”, Moskva, 1973 | MR

[16] I. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer-Verlag, Berlin, 1934 | Zbl