@article{SM_1979_35_3_a1,
author = {M. A. Antonets},
title = {The algebra of {Weyl} symbols and the {Cauchy} problem for regular symbols},
journal = {Sbornik. Mathematics},
pages = {317--332},
year = {1979},
volume = {35},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1979_35_3_a1/}
}
M. A. Antonets. The algebra of Weyl symbols and the Cauchy problem for regular symbols. Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 317-332. http://geodesic.mathdoc.fr/item/SM_1979_35_3_a1/
[1] F. A. Berezin, “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Trudy Mosk. Matem. ob-va, XVIII, 1967, 117–196 | MR
[2] F. A. Berezin, M. A. Shubin, Lektsii po kvantovoi mekhanike, izd-vo MGU, Moskva, 1972
[3] M. A. Antonets, “Klassicheskii predel reshenii zadachi Koshi dlya evolyutsionnogo uravneniya Geizenberga–Veilya”, Vestnik MGU, seriya matem. mekh., 1977, no. 6, 23–33
[4] L. Schwartz, Theorie de distributions. I, II, Hermann, Paris, 1950, 1951 | MR | Zbl
[5] K. Iosida, Funktsionalnyi analiz, izd-vo “Mir”, Moskva, 1967 | MR
[6] V. P. Maslov, Operatornye metody, izd-vo “Nauka”, Moskva, 1973 | MR
[7] M. A. Shubin, “Psevdodifferentsialnye operatory v $R^n$”, DAN SSSR, 196:2 (1971), 316–318
[8] H. Kumano-Go, “Remarks on pseudodifferential operators”, J. Math. Soc. Japan, 21:3 (1969), 413–439 | Zbl
[9] L. Khërmander, “Psevdodifferentsialnye operatory i gipoelliiticheskie uravneniya”, Psevdodifferentsialnye operatory, izd-vo “Mir”, Moskva, 1967, 297–367 | MR
[10] M. A. Shubin, “O suschestvennoi samosopryazhennosti ravnomerno gipoellipticheskikh operatorov”, Vestnik MGU, 1975, no. 2, 91–94] | Zbl
[11] M. A. Krasnoselskii, P. P. 3abreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstve summiruemykh funktsii, izd-vo “Nauka”, Moskva, 1965
[12] V. L. Roitburd, “O predstavlenii operatora $e^{tp}$ kontinualnym integralom”, Funkts. analiz, 10:2 (1976), 86–87 | MR | Zbl
[13] W. Himziker, “On the space-time behaviour of schrödinger wavefunction”, J. Math. Phys., 7 (1966), 300–304 | DOI
[14] V. P. Maslov, I. A. Shishmarev, “O $T$-proizvedenii gipoellipticheskikh operatorov”, Sovremennye problemy matematiki, 8, VINITI, Moskva, 1977, 137–197
[15] M. A. Antonets, “Klassicheskii predel reshenii zadachi Koshi dlya gipoellipticheskikh simvolov Veilya”, Uspekhi matem. nauk, XXXII:5(197) (1977), 171–172
[16] M. A. Antonets, “O klassicheskom predele kvantovaniya Veilya”, Funkts. analiz, 12:1 (1978), 62–63 | MR | Zbl