The algebra of Weyl symbols and the Cauchy problem for regular symbols
Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 317-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algebra of generalized functions and an isomorphic algebra of continuous linear operators in Schwartz space are defined. The properties of this algebra are studied, and the exponential function of certain elements of it is constructed. Bibliography: 16 titles.
@article{SM_1979_35_3_a1,
     author = {M. A. Antonets},
     title = {The algebra of {Weyl} symbols and the {Cauchy} problem for regular symbols},
     journal = {Sbornik. Mathematics},
     pages = {317--332},
     year = {1979},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_3_a1/}
}
TY  - JOUR
AU  - M. A. Antonets
TI  - The algebra of Weyl symbols and the Cauchy problem for regular symbols
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 317
EP  - 332
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_3_a1/
LA  - en
ID  - SM_1979_35_3_a1
ER  - 
%0 Journal Article
%A M. A. Antonets
%T The algebra of Weyl symbols and the Cauchy problem for regular symbols
%J Sbornik. Mathematics
%D 1979
%P 317-332
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1979_35_3_a1/
%G en
%F SM_1979_35_3_a1
M. A. Antonets. The algebra of Weyl symbols and the Cauchy problem for regular symbols. Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 317-332. http://geodesic.mathdoc.fr/item/SM_1979_35_3_a1/

[1] F. A. Berezin, “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Trudy Mosk. Matem. ob-va, XVIII, 1967, 117–196 | MR

[2] F. A. Berezin, M. A. Shubin, Lektsii po kvantovoi mekhanike, izd-vo MGU, Moskva, 1972

[3] M. A. Antonets, “Klassicheskii predel reshenii zadachi Koshi dlya evolyutsionnogo uravneniya Geizenberga–Veilya”, Vestnik MGU, seriya matem. mekh., 1977, no. 6, 23–33

[4] L. Schwartz, Theorie de distributions. I, II, Hermann, Paris, 1950, 1951 | MR | Zbl

[5] K. Iosida, Funktsionalnyi analiz, izd-vo “Mir”, Moskva, 1967 | MR

[6] V. P. Maslov, Operatornye metody, izd-vo “Nauka”, Moskva, 1973 | MR

[7] M. A. Shubin, “Psevdodifferentsialnye operatory v $R^n$”, DAN SSSR, 196:2 (1971), 316–318

[8] H. Kumano-Go, “Remarks on pseudodifferential operators”, J. Math. Soc. Japan, 21:3 (1969), 413–439 | Zbl

[9] L. Khërmander, “Psevdodifferentsialnye operatory i gipoelliiticheskie uravneniya”, Psevdodifferentsialnye operatory, izd-vo “Mir”, Moskva, 1967, 297–367 | MR

[10] M. A. Shubin, “O suschestvennoi samosopryazhennosti ravnomerno gipoellipticheskikh operatorov”, Vestnik MGU, 1975, no. 2, 91–94] | Zbl

[11] M. A. Krasnoselskii, P. P. 3abreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstve summiruemykh funktsii, izd-vo “Nauka”, Moskva, 1965

[12] V. L. Roitburd, “O predstavlenii operatora $e^{tp}$ kontinualnym integralom”, Funkts. analiz, 10:2 (1976), 86–87 | MR | Zbl

[13] W. Himziker, “On the space-time behaviour of schrödinger wavefunction”, J. Math. Phys., 7 (1966), 300–304 | DOI

[14] V. P. Maslov, I. A. Shishmarev, “O $T$-proizvedenii gipoellipticheskikh operatorov”, Sovremennye problemy matematiki, 8, VINITI, Moskva, 1977, 137–197

[15] M. A. Antonets, “Klassicheskii predel reshenii zadachi Koshi dlya gipoellipticheskikh simvolov Veilya”, Uspekhi matem. nauk, XXXII:5(197) (1977), 171–172

[16] M. A. Antonets, “O klassicheskom predele kvantovaniya Veilya”, Funkts. analiz, 12:1 (1978), 62–63 | MR | Zbl