Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for $L^p$-spaces with $p\in(0,1)$
Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 301-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the solution to some problems concerning rational approximation in the $L^p$-metric ($p\in(0,1)$) is given. The following is a typical problem: to describe the closure in the space $L^p[-1,1]$ of the linear hull of the Cauchy family $\{1/(x-a)\}_{a\in[-1,1]}.$ In the paper it is shown that this closure consists of all functions $f\in L^p[-1,1]$ for which there exists a functon $\tilde f$, analytic in $\mathbf C\setminus[-1,1]$, decreasing to zero at infinity, and such that $f(x)=\lim_{y\to0+}\tilde f(x+iy)=\lim_{y\to0+}\tilde f(x-iy)$ for almost all $x\in[-1,1]$. Bibliography: 6 titles.
@article{SM_1979_35_3_a0,
     author = {A. B. Aleksandrov},
     title = {Approximation by rational functions, and an analogue of the {M.~Riesz} theorem on conjugate functions for $L^p$-spaces with~$p\in(0,1)$},
     journal = {Sbornik. Mathematics},
     pages = {301--316},
     year = {1979},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_3_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for $L^p$-spaces with $p\in(0,1)$
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 301
EP  - 316
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_3_a0/
LA  - en
ID  - SM_1979_35_3_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for $L^p$-spaces with $p\in(0,1)$
%J Sbornik. Mathematics
%D 1979
%P 301-316
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1979_35_3_a0/
%G en
%F SM_1979_35_3_a0
A. B. Aleksandrov. Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for $L^p$-spaces with $p\in(0,1)$. Sbornik. Mathematics, Tome 35 (1979) no. 3, pp. 301-316. http://geodesic.mathdoc.fr/item/SM_1979_35_3_a0/

[1] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, Moskva, 1963

[2] I. I. Privalov, Granichnye svoistva analiticheskikh funktsiya, Gostekhizdat, Moskva–Leningrad, 1950

[3] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo “Mir”, Moskva, 1973 | MR

[4] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on $H^p$-spaces with $0

1$”, J. reine und angew. Math., 238 (1969), 32–60 | MR | Zbl

[5] R. R. Coifman, “A real variable characterization of $H^p$”, Studia Math., 51:3 (1974), 269–274 | MR | Zbl

[6] K. de Leeuw, “The failure of spectral analysis in $L^p$ for $0

$”, Bull. Amer. Math. Soc., 82:1 (1976), 111–114 | DOI | MR | Zbl