On the singular spectrum in a system of three particles
Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 283-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H$ be the energy operator of a system of three pairwise interacting particles whose pair potentials admit the estimate $$ |v_\alpha(x)|\leqslant C(1+|x|)^{-a} \qquad a>\frac{11}4,\quad x\in\mathbf R^3, $$ and suppose the subsystems of two particles have no virtual levels. It is established that the singular continuous spectrum of $H$ is empty and its positive eigenvalues have no finite limit points. The considerations of the paper are based on a study of Faddeev's equations in coordinate representation and an application of imbedding theorems for anisotropic Sobolev classes in the space $L_2(\mathbf S^5)$. Bibliography: 13 titles.
@article{SM_1979_35_2_a8,
     author = {D. R. Yafaev},
     title = {On the singular spectrum in a~system of three particles},
     journal = {Sbornik. Mathematics},
     pages = {283--300},
     year = {1979},
     volume = {35},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_2_a8/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - On the singular spectrum in a system of three particles
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 283
EP  - 300
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_2_a8/
LA  - en
ID  - SM_1979_35_2_a8
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T On the singular spectrum in a system of three particles
%J Sbornik. Mathematics
%D 1979
%P 283-300
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1979_35_2_a8/
%G en
%F SM_1979_35_2_a8
D. R. Yafaev. On the singular spectrum in a system of three particles. Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 283-300. http://geodesic.mathdoc.fr/item/SM_1979_35_2_a8/

[1] L. D. Faddeev, Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Trudy Matem. in-ta im. V. A. Steklova, LXIX, 1963 | MR | Zbl

[2] E. L. Korotyaev, D. R. Yafaev, “Sledy na poverkhnostyakh v funktsionalnykh klassakh s dominiruyuschimi smeshannymi proizvodnymi”, Zapiski nauchn. seminarov LOMI, 69, 1977, 106–123 | Zbl

[3] R. Newton, “Fredholm methods in the three-body problem. I”, J. Math. Phys., 12:8 (1971), 1552–1567 | DOI | MR | Zbl

[4] J. Ginibre, M. Moulin, “Hilbert space approach to the quantum mechanical three-body problem”, Ann. Inst. H. Poincare, ser. A, 21 (1974), 97–147 | MR

[5] S. Agmon, “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Super Pisa, ser. IV, 2:2 (1975), 151–218 | MR | Zbl

[6] E. Balslev, J. M. Combes, “Spectral properties of many-body Schrodinger operators with dilatation – analytic interactions”, Comm. Math. Phys., 22 (1971), 280–294 | DOI | MR | Zbl

[7] B. Simon, “Quadratic form techniques and the Balslev–Combes theorem”, Comm. Math. Phys., 27 (1972), 1–9 | DOI | MR | Zbl

[8] D. R. Yafaev, “O virtualnom urovne uravneniya Shredingera”, Zapiski nauchn. seminarov LOMI, 51, 1975, 203–216 | Zbl

[9] T. Ikebe, “Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory”, Arch. Rat. Mech. Anal., 5:1 (1960), 1–34 | DOI | MR | Zbl

[10] V. G. Deich, E. L. Korotyaev, D. R. Yafaev, “Teoriya potentsialnogo rasseyaniya pri uchete prostranstvennoi anizotropii”, Zapiski nauchn. seminarov LOMI, 73, 1977, 35–51 | MR | Zbl

[11] R. Iorio, M. O'Carrol, “Asymptotic completeness for multi-particle Schroedinger hamiltonians with weak patentials”, Comm. Math. Phys., 27:2 (1972), 137–145 | DOI | MR

[12] M. I. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi matem. nauk, XXXII:1(193) (1977), 17–84 | MR

[13] E. Kopson, Asimptoticheskie razlozheniya, izd-vo “Mir”, Moskva, 1966