Some properties of two-dimensional surfaces with zero normal torsion in $E^4$
Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 251-265
Cet article a éte moissonné depuis la source Math-Net.Ru
In four-dimensional Euclidean space $E^4$ the author considers two-dimensional class $C^3$ surfaces having zero normal torsion at every point and in every direction. A necessary and sufficient condition is established for such surfaces to belong to a certain hyperplane. Bibliography: 3 titles.
@article{SM_1979_35_2_a6,
author = {V. T. Fomenko},
title = {Some properties of two-dimensional surfaces with zero normal torsion in~$E^4$},
journal = {Sbornik. Mathematics},
pages = {251--265},
year = {1979},
volume = {35},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1979_35_2_a6/}
}
V. T. Fomenko. Some properties of two-dimensional surfaces with zero normal torsion in $E^4$. Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 251-265. http://geodesic.mathdoc.fr/item/SM_1979_35_2_a6/
[1] E. Kartan, Rimanova geometriya v ortogonalnom repere, izd-vo MGU, Moskva, 1960
[2] S. B. Kadomtsev, “Issledovanie nekotorykh svoistv normalnogo krucheniya dvumernoi poverkhnosti v chetyrekhmernom prostranstve”, Itogi nauki i tekhniki. Problemy geometrii, 7, VINITI, Moskva, 1975, 267–278 | MR | Zbl
[3] E. Bompiani, “Studi sugli spazi curvi. La seconda forma fondamentale di una $V_m$ in $V_n$”, Atti del Ist. Veneto, 80 (1920–1921), 1113–1145