Some properties of two-dimensional surfaces with zero normal torsion in $E^4$
Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 251-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In four-dimensional Euclidean space $E^4$ the author considers two-dimensional class $C^3$ surfaces having zero normal torsion at every point and in every direction. A necessary and sufficient condition is established for such surfaces to belong to a certain hyperplane. Bibliography: 3 titles.
@article{SM_1979_35_2_a6,
     author = {V. T. Fomenko},
     title = {Some properties of two-dimensional surfaces with zero normal torsion in~$E^4$},
     journal = {Sbornik. Mathematics},
     pages = {251--265},
     year = {1979},
     volume = {35},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_2_a6/}
}
TY  - JOUR
AU  - V. T. Fomenko
TI  - Some properties of two-dimensional surfaces with zero normal torsion in $E^4$
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 251
EP  - 265
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_2_a6/
LA  - en
ID  - SM_1979_35_2_a6
ER  - 
%0 Journal Article
%A V. T. Fomenko
%T Some properties of two-dimensional surfaces with zero normal torsion in $E^4$
%J Sbornik. Mathematics
%D 1979
%P 251-265
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1979_35_2_a6/
%G en
%F SM_1979_35_2_a6
V. T. Fomenko. Some properties of two-dimensional surfaces with zero normal torsion in $E^4$. Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 251-265. http://geodesic.mathdoc.fr/item/SM_1979_35_2_a6/

[1] E. Kartan, Rimanova geometriya v ortogonalnom repere, izd-vo MGU, Moskva, 1960

[2] S. B. Kadomtsev, “Issledovanie nekotorykh svoistv normalnogo krucheniya dvumernoi poverkhnosti v chetyrekhmernom prostranstve”, Itogi nauki i tekhniki. Problemy geometrii, 7, VINITI, Moskva, 1975, 267–278 | MR | Zbl

[3] E. Bompiani, “Studi sugli spazi curvi. La seconda forma fondamentale di una $V_m$ in $V_n$”, Atti del Ist. Veneto, 80 (1920–1921), 1113–1145