Intersections of loops in two-dimensional manifolds
Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 229-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given an arbitrary smooth two-dimensional manifold $A$ with nonempty boundary and a point $a\in\partial A$, mappings $\mathbf Z[\pi_1(A,a)]\times\mathbf Z[\pi_1(A,a)]\to\mathbf Z[\pi_1(A,a)]$ and $\pi_1(A,a)\to\mathbf Z[\pi_1(A,a)]$. are constructed. In terms of them the author formulates and proves necessary and sufficient conditions for realizability of an element of the group $\pi_1(A,a)$ by a simple loop, conditions for the realizability of a few elements of $\pi_1(A,a)$ by nonintersecting loops and conditions for realizability of an automorphism of this group by a diffeomorphism $(A,a)\to(A,a)$. Figures: 5. Bibliography: 14 titles.
@article{SM_1979_35_2_a5,
     author = {V. G. Turaev},
     title = {Intersections of loops in two-dimensional manifolds},
     journal = {Sbornik. Mathematics},
     pages = {229--250},
     year = {1979},
     volume = {35},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_2_a5/}
}
TY  - JOUR
AU  - V. G. Turaev
TI  - Intersections of loops in two-dimensional manifolds
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 229
EP  - 250
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_2_a5/
LA  - en
ID  - SM_1979_35_2_a5
ER  - 
%0 Journal Article
%A V. G. Turaev
%T Intersections of loops in two-dimensional manifolds
%J Sbornik. Mathematics
%D 1979
%P 229-250
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1979_35_2_a5/
%G en
%F SM_1979_35_2_a5
V. G. Turaev. Intersections of loops in two-dimensional manifolds. Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 229-250. http://geodesic.mathdoc.fr/item/SM_1979_35_2_a5/

[1] D. R. J. Chillingworth, “Winding numbers on surfaces. II”, Math. Ann., 199 (1972), 131–153 | DOI | MR | Zbl

[2] D. Erie, “Die quadratische Form eines Knotens und ein Satz über Knotenmannigfaltigkeiten”, J. reine und angew. Math., 236 (1969), 174–218 | MR

[3] K. W. Gruenberg, “Cohomological topics in group theory”, Lect. Notes in Math., 143 (1970) | MR | Zbl

[4] M. A. Kervaire, “Geometric and algebraic intersection numbers”, Comm. Math. Helv., 39 (1965), 271–280 | DOI | MR | Zbl

[5] J. Levine, “Invariants of knot cobordism”, Inv. math., 8:2 (1969), 98–110 | DOI | MR | Zbl

[6] J. W. Milnor, “Infinite cyclic coverings”, Conf. on the Topology of Manifolds (Michigan, 1967), Mass., Boston, 1968, 115–133 | MR

[7] K. Murasugi, “On a certain numerical invariant of link types”, Trans. Amer. Math. Soc., 117 (1965), 387–422 | DOI | MR | Zbl

[8] D. G. Quillen, “On the associated graded ring of a group ring”, J. Algebra, 10:4 (1968), 411–418 | DOI | MR | Zbl

[9] B. L. Reinhart, “Algorithms for Jordan curves on compact surfaces”, Ann. Math., 75:2 (1962), 209–222 | DOI | MR | Zbl

[10] V. A. Rokhlin, “Novye rezultaty teorii chetyrekhmernykh mnogoobrazii”, DAN SSSR, 84:2 (1952), 221–224 | MR | Zbl

[11] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London–New York, 1970 | MR

[12] H. Zieschang, “Über Automorphismen ebener diskontinuierlicher Gruppen”, Math. Ann., 166 (1966), 148–1167 | DOI | MR

[13] H. Zieschang, “Algorithmen für einfache Kurven auf Flächen”, Math. Scand., 17 (1965), 17–40 | MR | Zbl

[14] H. Zieschang, “Algorithmen für einfache Kurven auf Flächen. II”, Math. Scand, 25 (1969), 49–58 | MR | Zbl