Generalized analytic functions of several variables
Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 181-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the system of differential equations $$ \frac{\partial u}{\partial\bar z_k}-\overline{a_ku}=f_k,\qquad k=1,2,\dots,n $$ is studied in a domain in $\mathbf C^n$. Differential relations between the coefficients are indicated under which the homogeneous system ($f_k=0$) has infinitely many linearly independent local solutions at each point. Global solvability of the system is studied. It is proved that this problem, and also the description of global solutions of the homogeneous system, reduces to analogous questions for a connection of the type $\partial u/\partial\bar z=\overline{au}+bu$ in a line bundle over a Riemann surface, related to the original system in a natural way. Using this reduction, in some cases one can establish that the index of the operator corresponding to this system is finite and find a formula for it. Bibliography: 11 titles.
@article{SM_1979_35_2_a2,
     author = {G. A. Magomedov and V. P. Palamodov},
     title = {Generalized analytic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {181--205},
     year = {1979},
     volume = {35},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_2_a2/}
}
TY  - JOUR
AU  - G. A. Magomedov
AU  - V. P. Palamodov
TI  - Generalized analytic functions of several variables
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 181
EP  - 205
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_2_a2/
LA  - en
ID  - SM_1979_35_2_a2
ER  - 
%0 Journal Article
%A G. A. Magomedov
%A V. P. Palamodov
%T Generalized analytic functions of several variables
%J Sbornik. Mathematics
%D 1979
%P 181-205
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1979_35_2_a2/
%G en
%F SM_1979_35_2_a2
G. A. Magomedov; V. P. Palamodov. Generalized analytic functions of several variables. Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 181-205. http://geodesic.mathdoc.fr/item/SM_1979_35_2_a2/

[1] T. Carleman, “Sur les systemes lineaires aux derivees partielles du premier ordre a deux variables”, C. r. Acad. sci. Paris, 197:7 (1933), 471–474 | Zbl

[2] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, Moskva, 1959 | MR

[3] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Moskva publ izd-vo “Mir”, 1966 | MR

[4] W. Tutschke, Partielle komplexe Differentialgleichungen, D. V. W., Berlin, 1977 | MR

[5] L. G. Mikhailov, A. V. Abrosimov, “O nekotorykh pereopredelennykh sistemakh uravnenii s chastnymi proizvodnymi”, DAN Tadzh. SSR, XIV:6 (1971), 9–13

[6] L. G. Mikhailov, A. V. Abrosimov, “Obobschennaya sistema Koshi–Rimana so mnogimi nezavisimymi peremennymi”, DAN SSSR, 210:1 (1973), 26–29 | MR

[7] A. Koohara, “Similarity principle of the generalized Cauchy–Riemann equations for several complex variables”, J. Math. Soc. Japan, 23 (1971), 213–249 | MR | Zbl

[8] B. V. Shabat, “Ob otobrazheniyakh, osuschestvlyaemykh resheniyami sistemy Karlemana”, Uspekhi matem. nauk, XI:3(69) (1966), 203–206

[9] V. P. Palamodov, “Zamechanie ob eksponentsialnom predstavlenii reshenii differentsialnykh uravnenii s postoyannymi koeffitsientami”, Matem. sb., 76(118) (1968), 417–434 | MR | Zbl

[10] V. P. Palamodov, “Differentsialnye operatory v klasse skhodyaschikhsya stepennykh ryadov i podgotovitelnaya lemma Veiershtrassa”, Funkts. analiz, 2:3 (1968), 58–69 | MR | Zbl

[11] K. Morita, “Star-finite covering and star-finite property”, Math. Japan, 1 (1948), 60–68 | MR | Zbl