On finitely based varieties of Lie algebras
Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 165-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author investigates the question of when the following objects are finitely based: 1) the product of two varieties of Lie algebras; 2) the commutator of two varieties; 3) the union of two varieties, one of which is nilpotent. Bibliography: 4 titles.
@article{SM_1979_35_2_a0,
     author = {M. V. Zaicev},
     title = {On finitely based varieties of {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {165--171},
     year = {1979},
     volume = {35},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_2_a0/}
}
TY  - JOUR
AU  - M. V. Zaicev
TI  - On finitely based varieties of Lie algebras
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 165
EP  - 171
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_2_a0/
LA  - en
ID  - SM_1979_35_2_a0
ER  - 
%0 Journal Article
%A M. V. Zaicev
%T On finitely based varieties of Lie algebras
%J Sbornik. Mathematics
%D 1979
%P 165-171
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1979_35_2_a0/
%G en
%F SM_1979_35_2_a0
M. V. Zaicev. On finitely based varieties of Lie algebras. Sbornik. Mathematics, Tome 35 (1979) no. 2, pp. 165-171. http://geodesic.mathdoc.fr/item/SM_1979_35_2_a0/

[1] Yu. A. Bakhturin, “O tozhdestvakh v algebrakh Li”, Vestnik MGU, matematika, mekhanika, 1973, no. 1, 12–18 | Zbl

[2] R. M. Bryant, M. R. Vaughan-Lee, “Soluble varieties of Lie algebras”, Quart. J. Math., Oxford, 23:89 (1972), 107–112 | DOI | MR | Zbl

[3] R. M. Bryant, “On some varieties of groups”, Bull. London Math. Soc., 1:1 (1969), 60–64 | DOI | MR | Zbl

[4] Yu. A. Bakhturin, “O tozhdestvakh v metabelevykh algebrakh Li”, Trudy seminara im. I. G. Petrovskogo, no. 1, 1975, 45–46